DL-Art-School/codes/trainer/eval/eval_wer.py

138 lines
5.4 KiB
Python
Raw Normal View History

2022-02-14 03:47:29 +00:00
from copy import deepcopy
from datasets import load_metric
import torch
2022-02-18 00:30:33 +00:00
from tqdm import tqdm
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
2022-02-14 03:47:29 +00:00
import trainer.eval.evaluator as evaluator
from data import create_dataset, create_dataloader
2022-02-18 00:30:33 +00:00
from models.asr.w2v_wrapper import only_letters, Wav2VecWrapper
from models.tacotron2.text import sequence_to_text, tacotron_symbols
from pyctcdecode import build_ctcdecoder
2022-02-14 03:47:29 +00:00
2022-02-18 00:30:33 +00:00
# Librispeech:
# baseline: 4.5% WER.
# fine-tuned new head (0): 5.4% WER
# train_wav2vec_mass_large/models/13250_wav2vec.pth: 3.05% WER
# train_wav2vec_mass_large/models/13250_wav2vec.pth with kenlm: 3.34% WER
from utils.util import opt_get
2022-02-18 00:30:33 +00:00
def tacotron_detokenize(seq):
return only_letters(sequence_to_text(seq))
fb_processor = None
def fb_detokenize(seq):
global fb_processor
if fb_processor is None:
fb_processor = Wav2Vec2Processor.from_pretrained(f"facebook/wav2vec2-large-960h")
return fb_processor.decode(seq)
2022-02-14 03:47:29 +00:00
def perform_lm_processing(logits, decoder):
from pyctcdecode.constants import (
DEFAULT_BEAM_WIDTH,
DEFAULT_MIN_TOKEN_LOGP,
DEFAULT_PRUNE_LOGP,
)
assert len(logits.shape) == 3 and logits.shape[0] == 1
decoded_beams = decoder.decode_beams(
logits[0].cpu().numpy(),
beam_width=DEFAULT_BEAM_WIDTH,
beam_prune_logp=DEFAULT_PRUNE_LOGP,
token_min_logp=DEFAULT_MIN_TOKEN_LOGP
)
text = decoded_beams[0][0]
return only_letters(text.upper())
2022-02-14 03:47:29 +00:00
class WerEvaluator(evaluator.Evaluator):
"""
Evaluator that produces the WER for a speech recognition model on a test set.
"""
2022-02-18 00:30:33 +00:00
def __init__(self, model, opt_eval, env, detokenizer_fn=tacotron_detokenize):
2022-02-14 03:47:29 +00:00
super().__init__(model, opt_eval, env, uses_all_ddp=False)
self.clip_key = opt_eval['clip_key']
self.clip_lengths_key = opt_eval['clip_lengths_key']
self.text_seq_key = opt_eval['text_seq_key']
self.text_seq_lengths_key = opt_eval['text_seq_lengths_key']
self.wer_metric = load_metric('wer')
2022-02-18 00:30:33 +00:00
self.detokenizer_fn = detokenizer_fn
2022-02-14 03:47:29 +00:00
self.kenlm_model_path = opt_get(opt_eval, ['kenlm_path'], None)
if self.kenlm_model_path is not None:
self.kenlm_decoder = build_ctcdecoder(labels=tacotron_symbols(), kenlm_model_path=self.kenlm_model_path)
2022-02-14 03:47:29 +00:00
def perform_eval(self):
val_opt = deepcopy(self.env['opt']['datasets']['val'])
val_opt['batch_size'] = 1 # This is important to ensure no padding.
val_dataset, collate_fn = create_dataset(val_opt, return_collate=True)
val_loader = create_dataloader(val_dataset, val_opt, self.env['opt'], None, collate_fn=collate_fn)
model = self.model.module if hasattr(self.model, 'module') else self.model # Unwrap DDP models
model.eval()
with torch.no_grad():
preds = []
reals = []
2022-02-18 00:30:33 +00:00
for batch in tqdm(val_loader):
2022-02-14 03:47:29 +00:00
clip = batch[self.clip_key]
assert clip.shape[0] == 1
real_seq = batch[self.text_seq_key]
real_seq_len = batch[self.text_seq_lengths_key][0]
real_seq = real_seq[:, :real_seq_len]
2022-02-18 00:30:33 +00:00
real_str = only_letters(sequence_to_text(real_seq[0]))
if len(real_str) > 0:
reals.append(real_str)
else:
continue # The WER computer doesn't like this scenario.
clip_len = batch[self.clip_lengths_key][0]
clip = clip[:, :, :clip_len].cuda()
logits = model.inference_logits(clip)
if self.kenlm_model_path is not None:
pred = perform_lm_processing(logits, self.kenlm_decoder)
else:
pred_seq = logits.argmax(dim=-1)
pred_seq = [model.decode_ctc(p) for p in pred_seq]
pred = self.detokenizer_fn(pred_seq[0])
preds.append(pred)
2022-02-14 03:47:29 +00:00
wer = self.wer_metric.compute(predictions=preds, references=reals)
model.train()
return {'eval_wer': wer}
2022-02-18 00:30:33 +00:00
if __name__ == '__main__':
env = { 'opt': {
'datasets': {
'val': {
'name': 'mass_test',
'n_workers': 1,
'batch_size': 1,
'mode': 'paired_voice_audio',
'sample_rate': 16000,
'path': ['y:/bigasr_dataset/librispeech/test_clean/test_clean.txt'],
'fetcher_mode': ['libritts'],
#'path': ['y:/bigasr_dataset/mozcv/en/test.tsv'],
#'fetcher_mode': ['mozilla_cv'],
2022-02-18 00:30:33 +00:00
'max_wav_length': 200000,
'use_bpe_tokenizer': False,
'max_text_length': 400,
'load_conditioning': False,
'phase': 'eval',
}
}
}}
opt_eval = {
'clip_key': 'wav',
'clip_lengths_key': 'wav_lengths',
'text_seq_key': 'padded_text',
'text_seq_lengths_key': 'text_lengths',
'kenlm_path': 'Y:\\bookscorpus-5gram\\5gram.bin'
2022-02-18 00:30:33 +00:00
}
2022-02-20 03:36:35 +00:00
model = Wav2VecWrapper(vocab_size=148, basis_model='facebook/wav2vec2-large-robust-ft-libri-960h', freeze_transformer=True, checkpointing_enabled=False)
weights = torch.load('X:\\dlas\\experiments/train_wav2vec_mass_large/models/13250_wav2vec.pth')
2022-02-20 03:36:35 +00:00
model.load_state_dict(weights)
2022-02-18 00:30:33 +00:00
model = model.cuda()
2022-02-20 03:36:35 +00:00
eval = WerEvaluator(model, opt_eval, env)
2022-02-18 00:30:33 +00:00
print(eval.perform_eval())