50 lines
2.3 KiB
Python
50 lines
2.3 KiB
Python
|
import os
|
||
|
import torch
|
||
|
import os.path as osp
|
||
|
import torchvision
|
||
|
from torch.nn.functional import interpolate
|
||
|
from tqdm import tqdm
|
||
|
|
||
|
import trainer.eval.evaluator as evaluator
|
||
|
|
||
|
from pytorch_fid import fid_score
|
||
|
from data import create_dataset
|
||
|
from torch.utils.data import DataLoader
|
||
|
|
||
|
from trainer.injectors.gaussian_diffusion_injector import GaussianDiffusionInferenceInjector
|
||
|
from utils.util import opt_get
|
||
|
|
||
|
|
||
|
class SrDiffusionFidEvaluator(evaluator.Evaluator):
|
||
|
def __init__(self, model, opt_eval, env):
|
||
|
super().__init__(model, opt_eval, env)
|
||
|
self.batch_sz = opt_eval['batch_size']
|
||
|
self.fid_batch_size = opt_get(opt_eval, ['fid_batch_size'], 64)
|
||
|
assert self.batch_sz is not None
|
||
|
self.dataset = create_dataset(opt_eval['dataset'])
|
||
|
self.fid_real_samples = opt_eval['dataset']['paths'] # This is assumed to exist for the given dataset.
|
||
|
assert isinstance(self.fid_real_samples, str)
|
||
|
self.dataloader = DataLoader(self.dataset, self.batch_sz, shuffle=False, num_workers=1)
|
||
|
self.gd = GaussianDiffusionInferenceInjector(opt_eval['diffusion_params'], env)
|
||
|
self.out_key = opt_eval['diffusion_params']['out']
|
||
|
|
||
|
def perform_eval(self):
|
||
|
fid_fake_path = osp.join(self.env['base_path'], "..", "fid", str(self.env["step"]))
|
||
|
os.makedirs(fid_fake_path, exist_ok=True)
|
||
|
counter = 0
|
||
|
for batch in tqdm(self.dataloader):
|
||
|
batch = {k: v.to(self.env['device']) if isinstance(v, torch.Tensor) else v for k, v in batch.items()}
|
||
|
gen = self.gd(batch)[self.out_key]
|
||
|
|
||
|
# All gather if we're in distributed mode.
|
||
|
if torch.distributed.is_available() and torch.distributed.is_initialized():
|
||
|
gather_list = [torch.zeros_like(gen) for _ in range(torch.distributed.get_world_size())]
|
||
|
torch.distributed.all_gather(gather_list, gen)
|
||
|
gen = torch.cat(gather_list, dim=0)
|
||
|
|
||
|
for b in range(self.batch_sz):
|
||
|
torchvision.utils.save_image(gen[b], osp.join(fid_fake_path, "%i_.png" % (counter)))
|
||
|
counter += 1
|
||
|
|
||
|
return {"fid": fid_score.calculate_fid_given_paths([self.fid_real_samples, fid_fake_path], self.fid_batch_size,
|
||
|
True, 2048)}
|