DL-Art-School/codes/models/archs/stylegan/Discriminator_StyleGAN.py

375 lines
15 KiB
Python
Raw Normal View History

2020-11-10 23:06:54 +00:00
from collections import OrderedDict
import torch
from torch import nn
import torch.nn.functional as F
import numpy as np
class BlurLayer(nn.Module):
def __init__(self, kernel=None, normalize=True, flip=False, stride=1):
super(BlurLayer, self).__init__()
if kernel is None:
kernel = [1, 2, 1]
kernel = torch.tensor(kernel, dtype=torch.float32)
kernel = kernel[:, None] * kernel[None, :]
kernel = kernel[None, None]
if normalize:
kernel = kernel / kernel.sum()
if flip:
kernel = kernel[:, :, ::-1, ::-1]
self.register_buffer('kernel', kernel)
self.stride = stride
def forward(self, x):
# expand kernel channels
kernel = self.kernel.expand(x.size(1), -1, -1, -1)
x = F.conv2d(
x,
kernel,
stride=self.stride,
padding=int((self.kernel.size(2) - 1) / 2),
groups=x.size(1)
)
return x
class Upscale2d(nn.Module):
@staticmethod
def upscale2d(x, factor=2, gain=1):
assert x.dim() == 4
if gain != 1:
x = x * gain
if factor != 1:
shape = x.shape
x = x.view(shape[0], shape[1], shape[2], 1, shape[3], 1).expand(-1, -1, -1, factor, -1, factor)
x = x.contiguous().view(shape[0], shape[1], factor * shape[2], factor * shape[3])
return x
def __init__(self, factor=2, gain=1):
super().__init__()
assert isinstance(factor, int) and factor >= 1
self.gain = gain
self.factor = factor
def forward(self, x):
return self.upscale2d(x, factor=self.factor, gain=self.gain)
class Downscale2d(nn.Module):
def __init__(self, factor=2, gain=1):
super().__init__()
assert isinstance(factor, int) and factor >= 1
self.factor = factor
self.gain = gain
if factor == 2:
f = [np.sqrt(gain) / factor] * factor
self.blur = BlurLayer(kernel=f, normalize=False, stride=factor)
else:
self.blur = None
def forward(self, x):
assert x.dim() == 4
# 2x2, float32 => downscale using _blur2d().
if self.blur is not None and x.dtype == torch.float32:
return self.blur(x)
# Apply gain.
if self.gain != 1:
x = x * self.gain
# No-op => early exit.
if self.factor == 1:
return x
# Large factor => downscale using tf.nn.avg_pool().
# NOTE: Requires tf_config['graph_options.place_pruned_graph']=True to work.
return F.avg_pool2d(x, self.factor)
class EqualizedConv2d(nn.Module):
"""Conv layer with equalized learning rate and custom learning rate multiplier."""
def __init__(self, input_channels, output_channels, kernel_size, stride=1, gain=2 ** 0.5, use_wscale=False,
lrmul=1, bias=True, intermediate=None, upscale=False, downscale=False):
super().__init__()
if upscale:
self.upscale = Upscale2d()
else:
self.upscale = None
if downscale:
self.downscale = Downscale2d()
else:
self.downscale = None
he_std = gain * (input_channels * kernel_size ** 2) ** (-0.5) # He init
self.kernel_size = kernel_size
if use_wscale:
init_std = 1.0 / lrmul
self.w_mul = he_std * lrmul
else:
init_std = he_std / lrmul
self.w_mul = lrmul
self.weight = torch.nn.Parameter(
torch.randn(output_channels, input_channels, kernel_size, kernel_size) * init_std)
if bias:
self.bias = torch.nn.Parameter(torch.zeros(output_channels))
self.b_mul = lrmul
else:
self.bias = None
self.intermediate = intermediate
def forward(self, x):
bias = self.bias
if bias is not None:
bias = bias * self.b_mul
have_convolution = False
if self.upscale is not None and min(x.shape[2:]) * 2 >= 128:
# this is the fused upscale + conv from StyleGAN, sadly this seems incompatible with the non-fused way
# this really needs to be cleaned up and go into the conv...
w = self.weight * self.w_mul
w = w.permute(1, 0, 2, 3)
# probably applying a conv on w would be more efficient. also this quadruples the weight (average)?!
w = F.pad(w, [1, 1, 1, 1])
w = w[:, :, 1:, 1:] + w[:, :, :-1, 1:] + w[:, :, 1:, :-1] + w[:, :, :-1, :-1]
x = F.conv_transpose2d(x, w, stride=2, padding=(w.size(-1) - 1) // 2)
have_convolution = True
elif self.upscale is not None:
x = self.upscale(x)
downscale = self.downscale
intermediate = self.intermediate
if downscale is not None and min(x.shape[2:]) >= 128:
w = self.weight * self.w_mul
w = F.pad(w, [1, 1, 1, 1])
# in contrast to upscale, this is a mean...
w = (w[:, :, 1:, 1:] + w[:, :, :-1, 1:] + w[:, :, 1:, :-1] + w[:, :, :-1, :-1]) * 0.25 # avg_pool?
x = F.conv2d(x, w, stride=2, padding=(w.size(-1) - 1) // 2)
have_convolution = True
downscale = None
elif downscale is not None:
assert intermediate is None
intermediate = downscale
if not have_convolution and intermediate is None:
return F.conv2d(x, self.weight * self.w_mul, bias, padding=self.kernel_size // 2)
elif not have_convolution:
x = F.conv2d(x, self.weight * self.w_mul, None, padding=self.kernel_size // 2)
if intermediate is not None:
x = intermediate(x)
if bias is not None:
x = x + bias.view(1, -1, 1, 1)
return x
class EqualizedLinear(nn.Module):
"""Linear layer with equalized learning rate and custom learning rate multiplier."""
def __init__(self, input_size, output_size, gain=2 ** 0.5, use_wscale=False, lrmul=1, bias=True):
super().__init__()
he_std = gain * input_size ** (-0.5) # He init
# Equalized learning rate and custom learning rate multiplier.
if use_wscale:
init_std = 1.0 / lrmul
self.w_mul = he_std * lrmul
else:
init_std = he_std / lrmul
self.w_mul = lrmul
self.weight = torch.nn.Parameter(torch.randn(output_size, input_size) * init_std)
if bias:
self.bias = torch.nn.Parameter(torch.zeros(output_size))
self.b_mul = lrmul
else:
self.bias = None
def forward(self, x):
bias = self.bias
if bias is not None:
bias = bias * self.b_mul
return F.linear(x, self.weight * self.w_mul, bias)
class View(nn.Module):
def __init__(self, *shape):
super().__init__()
self.shape = shape
def forward(self, x):
return x.view(x.size(0), *self.shape)
class StddevLayer(nn.Module):
def __init__(self, group_size=4, num_new_features=1):
super().__init__()
self.group_size = group_size
self.num_new_features = num_new_features
def forward(self, x):
b, c, h, w = x.shape
group_size = min(self.group_size, b)
y = x.reshape([group_size, -1, self.num_new_features,
c // self.num_new_features, h, w])
y = y - y.mean(0, keepdim=True)
y = (y ** 2).mean(0, keepdim=True)
y = (y + 1e-8) ** 0.5
y = y.mean([3, 4, 5], keepdim=True).squeeze(3) # don't keep the meaned-out channels
y = y.expand(group_size, -1, -1, h, w).clone().reshape(b, self.num_new_features, h, w)
z = torch.cat([x, y], dim=1)
return z
class DiscriminatorBlock(nn.Sequential):
def __init__(self, in_channels, out_channels, gain, use_wscale, activation_layer, blur_kernel):
super().__init__(OrderedDict([
('conv0', EqualizedConv2d(in_channels, in_channels, kernel_size=3, gain=gain, use_wscale=use_wscale)),
# out channels nf(res-1)
('act0', activation_layer),
('blur', BlurLayer(kernel=blur_kernel)),
('conv1_down', EqualizedConv2d(in_channels, out_channels, kernel_size=3,
gain=gain, use_wscale=use_wscale, downscale=True)),
('act1', activation_layer)]))
class DiscriminatorTop(nn.Sequential):
def __init__(self,
mbstd_group_size,
mbstd_num_features,
in_channels,
intermediate_channels,
gain, use_wscale,
activation_layer,
resolution=4,
in_channels2=None,
output_features=1,
last_gain=1):
"""
:param mbstd_group_size:
:param mbstd_num_features:
:param in_channels:
:param intermediate_channels:
:param gain:
:param use_wscale:
:param activation_layer:
:param resolution:
:param in_channels2:
:param output_features:
:param last_gain:
"""
layers = []
if mbstd_group_size > 1:
layers.append(('stddev_layer', StddevLayer(mbstd_group_size, mbstd_num_features)))
if in_channels2 is None:
in_channels2 = in_channels
layers.append(('conv', EqualizedConv2d(in_channels + mbstd_num_features, in_channels2, kernel_size=3,
gain=gain, use_wscale=use_wscale)))
layers.append(('act0', activation_layer))
layers.append(('view', View(-1)))
layers.append(('dense0', EqualizedLinear(in_channels2 * resolution * resolution, intermediate_channels,
gain=gain, use_wscale=use_wscale)))
layers.append(('act1', activation_layer))
layers.append(('dense1', EqualizedLinear(intermediate_channels, output_features,
gain=last_gain, use_wscale=use_wscale)))
super().__init__(OrderedDict(layers))
class StyleGanDiscriminator(nn.Module):
def __init__(self, resolution, num_channels=3, fmap_base=8192, fmap_decay=1.0, fmap_max=512,
nonlinearity='lrelu', use_wscale=True, mbstd_group_size=4, mbstd_num_features=1,
blur_filter=None, structure='fixed', **kwargs):
"""
Discriminator used in the StyleGAN paper.
:param num_channels: Number of input color channels. Overridden based on dataset.
:param resolution: Input resolution. Overridden based on dataset.
# label_size=0, # Dimensionality of the labels, 0 if no labels. Overridden based on dataset.
:param fmap_base: Overall multiplier for the number of feature maps.
:param fmap_decay: log2 feature map reduction when doubling the resolution.
:param fmap_max: Maximum number of feature maps in any layer.
:param nonlinearity: Activation function: 'relu', 'lrelu'
:param use_wscale: Enable equalized learning rate?
:param mbstd_group_size: Group size for the mini_batch standard deviation layer, 0 = disable.
:param mbstd_num_features: Number of features for the mini_batch standard deviation layer.
:param blur_filter: Low-pass filter to apply when resampling activations. None = no filtering.
:param structure: 'fixed' = no progressive growing, 'linear' = human-readable
:param kwargs: Ignore unrecognized keyword args.
"""
super(StyleGanDiscriminator, self).__init__()
def nf(stage):
return min(int(fmap_base / (2.0 ** (stage * fmap_decay))), fmap_max)
self.mbstd_num_features = mbstd_num_features
self.mbstd_group_size = mbstd_group_size
self.structure = structure
# if blur_filter is None:
# blur_filter = [1, 2, 1]
resolution_log2 = int(np.log2(resolution))
assert resolution == 2 ** resolution_log2 and resolution >= 4
self.depth = resolution_log2 - 1
act, gain = {'relu': (torch.relu, np.sqrt(2)),
'lrelu': (nn.LeakyReLU(negative_slope=0.2), np.sqrt(2))}[nonlinearity]
# create the remaining layers
blocks = []
from_rgb = []
for res in range(resolution_log2, 2, -1):
# name = '{s}x{s}'.format(s=2 ** res)
blocks.append(DiscriminatorBlock(nf(res - 1), nf(res - 2),
gain=gain, use_wscale=use_wscale, activation_layer=act,
blur_kernel=blur_filter))
# create the fromRGB layers for various inputs:
from_rgb.append(EqualizedConv2d(num_channels, nf(res - 1), kernel_size=1,
gain=gain, use_wscale=use_wscale))
self.blocks = nn.ModuleList(blocks)
# Building the final block.
self.final_block = DiscriminatorTop(self.mbstd_group_size, self.mbstd_num_features,
in_channels=nf(2), intermediate_channels=nf(2),
gain=gain, use_wscale=use_wscale, activation_layer=act)
from_rgb.append(EqualizedConv2d(num_channels, nf(2), kernel_size=1,
gain=gain, use_wscale=use_wscale))
self.from_rgb = nn.ModuleList(from_rgb)
# register the temporary downSampler
self.temporaryDownsampler = nn.AvgPool2d(2)
def forward(self, images_in, depth=0, alpha=1.):
"""
:param images_in: First input: Images [mini_batch, channel, height, width].
:param labels_in: Second input: Labels [mini_batch, label_size].
:param depth: current height of operation (Progressive GAN)
:param alpha: current value of alpha for fade-in
:return:
"""
if self.structure == 'fixed':
x = self.from_rgb[0](images_in)
for i, block in enumerate(self.blocks):
x = block(x)
scores_out = self.final_block(x)
elif self.structure == 'linear':
assert depth < self.depth, "Requested output depth cannot be produced"
if depth > 0:
residual = self.from_rgb[self.depth - depth](self.temporaryDownsampler(images_in))
straight = self.blocks[self.depth - depth - 1](self.from_rgb[self.depth - depth - 1](images_in))
x = (alpha * straight) + ((1 - alpha) * residual)
for block in self.blocks[(self.depth - depth):]:
x = block(x)
else:
x = self.from_rgb[-1](images_in)
scores_out = self.final_block(x)
else:
raise KeyError("Unknown structure: ", self.structure)
return scores_out