2022-05-02 06:05:04 +00:00
|
|
|
# Copyright 2020 LMNT, Inc. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
# ==============================================================================
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import torch
|
|
|
|
import torch.nn as nn
|
|
|
|
import torch.nn.functional as F
|
|
|
|
|
|
|
|
from math import sqrt
|
|
|
|
|
2022-05-02 06:07:42 +00:00
|
|
|
from torch.utils.checkpoint import checkpoint
|
|
|
|
|
2022-05-02 06:05:04 +00:00
|
|
|
from trainer.networks import register_model
|
|
|
|
|
|
|
|
Linear = nn.Linear
|
|
|
|
ConvTranspose2d = nn.ConvTranspose2d
|
|
|
|
|
|
|
|
|
|
|
|
def Conv1d(*args, **kwargs):
|
|
|
|
layer = nn.Conv1d(*args, **kwargs)
|
|
|
|
nn.init.kaiming_normal_(layer.weight)
|
|
|
|
return layer
|
|
|
|
|
|
|
|
|
|
|
|
@torch.jit.script
|
|
|
|
def silu(x):
|
|
|
|
return x * torch.sigmoid(x)
|
|
|
|
|
|
|
|
|
|
|
|
class DiffusionEmbedding(nn.Module):
|
|
|
|
def __init__(self, max_steps):
|
|
|
|
super().__init__()
|
|
|
|
self.register_buffer('embedding', self._build_embedding(max_steps), persistent=False)
|
|
|
|
self.projection1 = Linear(128, 512)
|
|
|
|
self.projection2 = Linear(512, 512)
|
|
|
|
|
|
|
|
def forward(self, diffusion_step):
|
|
|
|
if diffusion_step.dtype in [torch.int32, torch.int64]:
|
|
|
|
x = self.embedding[diffusion_step]
|
|
|
|
else:
|
|
|
|
x = self._lerp_embedding(diffusion_step)
|
|
|
|
x = self.projection1(x)
|
|
|
|
x = silu(x)
|
|
|
|
x = self.projection2(x)
|
|
|
|
x = silu(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
def _lerp_embedding(self, t):
|
|
|
|
low_idx = torch.floor(t).long()
|
|
|
|
high_idx = torch.ceil(t).long()
|
|
|
|
low = self.embedding[low_idx]
|
|
|
|
high = self.embedding[high_idx]
|
|
|
|
return low + (high - low) * (t - low_idx)
|
|
|
|
|
|
|
|
def _build_embedding(self, max_steps):
|
|
|
|
steps = torch.arange(max_steps).unsqueeze(1) # [T,1]
|
|
|
|
dims = torch.arange(64).unsqueeze(0) # [1,64]
|
|
|
|
table = steps * 10.0 ** (dims * 4.0 / 63.0) # [T,64]
|
|
|
|
table = torch.cat([torch.sin(table), torch.cos(table)], dim=1)
|
|
|
|
return table
|
|
|
|
|
|
|
|
|
|
|
|
class SpectrogramUpsampler(nn.Module):
|
|
|
|
def __init__(self, n_mels):
|
|
|
|
super().__init__()
|
|
|
|
self.conv1 = ConvTranspose2d(1, 1, [3, 32], stride=[1, 16], padding=[1, 8])
|
|
|
|
self.conv2 = ConvTranspose2d(1, 1, [3, 32], stride=[1, 16], padding=[1, 8])
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
x = torch.unsqueeze(x, 1)
|
|
|
|
x = self.conv1(x)
|
|
|
|
x = F.leaky_relu(x, 0.4)
|
|
|
|
x = self.conv2(x)
|
|
|
|
x = F.leaky_relu(x, 0.4)
|
|
|
|
x = torch.squeeze(x, 1)
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
class ResidualBlock(nn.Module):
|
|
|
|
def __init__(self, n_mels, residual_channels, dilation, uncond=False):
|
|
|
|
'''
|
|
|
|
:param n_mels: inplanes of conv1x1 for spectrogram conditional
|
|
|
|
:param residual_channels: audio conv
|
|
|
|
:param dilation: audio conv dilation
|
|
|
|
:param uncond: disable spectrogram conditional
|
|
|
|
'''
|
|
|
|
super().__init__()
|
|
|
|
self.dilated_conv = Conv1d(residual_channels, 2 * residual_channels, 3, padding=dilation, dilation=dilation)
|
|
|
|
self.diffusion_projection = Linear(512, residual_channels)
|
|
|
|
if not uncond: # conditional model
|
|
|
|
self.conditioner_projection = Conv1d(n_mels, 2 * residual_channels, 1)
|
|
|
|
else: # unconditional model
|
|
|
|
self.conditioner_projection = None
|
|
|
|
|
|
|
|
self.output_projection = Conv1d(residual_channels, 2 * residual_channels, 1)
|
|
|
|
|
|
|
|
def forward(self, x, diffusion_step, conditioner=None):
|
|
|
|
assert (conditioner is None and self.conditioner_projection is None) or \
|
|
|
|
(conditioner is not None and self.conditioner_projection is not None)
|
|
|
|
|
|
|
|
diffusion_step = self.diffusion_projection(diffusion_step).unsqueeze(-1)
|
|
|
|
y = x + diffusion_step
|
|
|
|
if self.conditioner_projection is None: # using a unconditional model
|
|
|
|
y = self.dilated_conv(y)
|
|
|
|
else:
|
|
|
|
y = self.dilated_conv(y)
|
|
|
|
conditioner = self.conditioner_projection(conditioner)
|
|
|
|
conditioner = F.interpolate(conditioner, size=y.shape[-1], mode='nearest')
|
|
|
|
y = y + conditioner
|
|
|
|
|
|
|
|
gate, filter = torch.chunk(y, 2, dim=1)
|
|
|
|
y = torch.sigmoid(gate) * torch.tanh(filter)
|
|
|
|
|
|
|
|
y = self.output_projection(y)
|
|
|
|
residual, skip = torch.chunk(y, 2, dim=1)
|
|
|
|
return (x + residual) / sqrt(2.0), skip
|
|
|
|
|
|
|
|
|
|
|
|
class DiffWave(nn.Module):
|
|
|
|
def __init__(self, residual_layers=30, residual_channels=64, num_timesteps=4000, n_mels=128,
|
|
|
|
dilation_cycle_length=10, unconditional=False):
|
|
|
|
super().__init__()
|
|
|
|
self.input_projection = Conv1d(1, residual_channels, 1)
|
|
|
|
self.diffusion_embedding = DiffusionEmbedding(num_timesteps)
|
|
|
|
if unconditional: # use unconditional model
|
|
|
|
self.spectrogram_upsampler = None
|
|
|
|
else:
|
|
|
|
self.spectrogram_upsampler = SpectrogramUpsampler(n_mels)
|
|
|
|
|
|
|
|
self.residual_layers = nn.ModuleList([
|
|
|
|
ResidualBlock(n_mels, residual_channels, 2 ** (i % dilation_cycle_length), uncond=unconditional)
|
|
|
|
for i in range(residual_layers)
|
|
|
|
])
|
|
|
|
self.skip_projection = Conv1d(residual_channels, residual_channels, 1)
|
2022-05-02 06:10:33 +00:00
|
|
|
self.output_projection = Conv1d(residual_channels, 2, 1)
|
2022-05-02 06:05:04 +00:00
|
|
|
nn.init.zeros_(self.output_projection.weight)
|
|
|
|
|
|
|
|
def forward(self, x, timesteps, spectrogram=None):
|
|
|
|
assert (spectrogram is None and self.spectrogram_upsampler is None) or \
|
|
|
|
(spectrogram is not None and self.spectrogram_upsampler is not None)
|
|
|
|
x = self.input_projection(x)
|
|
|
|
x = F.relu(x)
|
|
|
|
|
2022-05-02 06:07:42 +00:00
|
|
|
timesteps = checkpoint(self.diffusion_embedding, timesteps)
|
2022-05-02 06:05:04 +00:00
|
|
|
if self.spectrogram_upsampler: # use conditional model
|
2022-05-02 06:07:42 +00:00
|
|
|
spectrogram = checkpoint(self.spectrogram_upsampler, spectrogram)
|
2022-05-02 06:05:04 +00:00
|
|
|
|
|
|
|
skip = None
|
|
|
|
for layer in self.residual_layers:
|
2022-05-02 06:07:42 +00:00
|
|
|
x, skip_connection = checkpoint(layer, x, timesteps, spectrogram)
|
2022-05-02 06:05:04 +00:00
|
|
|
skip = skip_connection if skip is None else skip_connection + skip
|
|
|
|
|
|
|
|
x = skip / sqrt(len(self.residual_layers))
|
|
|
|
x = self.skip_projection(x)
|
|
|
|
x = F.relu(x)
|
|
|
|
x = self.output_projection(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def register_diffwave(opt_net, opt):
|
|
|
|
return DiffWave(**opt_net['kwargs'])
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
model = DiffWave()
|
2022-05-02 06:10:33 +00:00
|
|
|
model(torch.randn(2,1,65536), torch.tensor([500,3999]), torch.randn(2,128,256))
|