108 lines
4.1 KiB
Python
108 lines
4.1 KiB
Python
|
import torch
|
||
|
import torch.nn as nn
|
||
|
import torch.nn.functional as F
|
||
|
from munch import munchify
|
||
|
|
||
|
from models.gpt_voice.lucidrains_gpt import Transformer
|
||
|
from models.tacotron2.taco_utils import get_mask_from_lengths
|
||
|
from models.tacotron2.text import symbols
|
||
|
from trainer.networks import register_model
|
||
|
from utils.util import opt_get
|
||
|
|
||
|
|
||
|
class ResBlock(nn.Module):
|
||
|
def __init__(self, chan):
|
||
|
super().__init__()
|
||
|
self.net = nn.Sequential(
|
||
|
nn.Conv1d(chan, chan, kernel_size=5, padding = 2),
|
||
|
nn.BatchNorm1d(chan),
|
||
|
nn.ReLU(),
|
||
|
nn.Conv1d(chan, chan, kernel_size=5, padding = 2),
|
||
|
nn.BatchNorm1d(chan)
|
||
|
)
|
||
|
|
||
|
def forward(self, x):
|
||
|
return F.relu(self.net(x) + x)
|
||
|
|
||
|
|
||
|
class MelEncoder(nn.Module):
|
||
|
def __init__(self, channels, mel_channels=80):
|
||
|
super().__init__()
|
||
|
self.channels = channels
|
||
|
self.encoder = nn.Sequential(nn.Conv1d(mel_channels, channels//4, kernel_size=7, padding=3),
|
||
|
ResBlock(channels//4),
|
||
|
ResBlock(channels//4),
|
||
|
nn.Conv1d(channels//4, channels//2, kernel_size=5, stride=2, padding=2),
|
||
|
nn.BatchNorm1d(channels//2),
|
||
|
nn.ReLU(),
|
||
|
ResBlock(channels//2),
|
||
|
ResBlock(channels//2),
|
||
|
ResBlock(channels//2),
|
||
|
nn.Conv1d(channels//2, channels, kernel_size=5, stride=2, padding=2),
|
||
|
ResBlock(channels),
|
||
|
ResBlock(channels),
|
||
|
ResBlock(channels)
|
||
|
)
|
||
|
|
||
|
def forward(self, x):
|
||
|
return self.encoder(x)
|
||
|
|
||
|
|
||
|
class GptAsr(nn.Module):
|
||
|
MAX_SYMBOLS_PER_PHRASE = 200
|
||
|
MAX_MEL_FRAMES = 1000 // 4
|
||
|
NUMBER_SYMBOLS = len(symbols)
|
||
|
NUMBER_TEXT_TOKENS = NUMBER_SYMBOLS
|
||
|
|
||
|
def __init__(self, layers=8, model_dim=512, heads=8):
|
||
|
super().__init__()
|
||
|
|
||
|
self.model_dim = model_dim
|
||
|
self.max_mel_frames = self.MAX_MEL_FRAMES
|
||
|
self.text_embedding = nn.Embedding(self.NUMBER_TEXT_TOKENS, model_dim)
|
||
|
self.mel_encoder = MelEncoder(model_dim)
|
||
|
self.text_pos_embedding = nn.Embedding(self.MAX_SYMBOLS_PER_PHRASE, model_dim)
|
||
|
self.mel_pos_embedding = nn.Embedding(self.MAX_MEL_FRAMES, model_dim)
|
||
|
self.gpt = Transformer(dim=model_dim, depth=layers, seq_len=1+self.MAX_SYMBOLS_PER_PHRASE+self.MAX_MEL_FRAMES, heads=heads,
|
||
|
attn_dropout=.1, ff_dropout=.1, non_causal_sequence_partition=self.MAX_MEL_FRAMES)
|
||
|
|
||
|
self.final_norm = nn.LayerNorm(model_dim)
|
||
|
self.text_head = nn.Linear(model_dim, self.NUMBER_TEXT_TOKENS)
|
||
|
|
||
|
def forward(self, mel_inputs, text_targets):
|
||
|
text_targets = F.pad(text_targets, (0, self.MAX_SYMBOLS_PER_PHRASE-text_targets.shape[1]))
|
||
|
text_emb = self.text_embedding(text_targets)
|
||
|
text_emb = text_emb + self.text_pos_embedding(torch.arange(text_emb.shape[1], device=text_targets.device))
|
||
|
mel_emb = self.mel_encoder(mel_inputs)
|
||
|
mel_emb = F.pad(mel_emb, (0, self.MAX_MEL_FRAMES-mel_emb.shape[-1]))
|
||
|
mel_emb = mel_emb.permute(0,2,1).contiguous()
|
||
|
mel_emb = mel_emb + self.mel_pos_embedding(torch.arange(mel_emb.shape[1], device=mel_emb.device))
|
||
|
emb = torch.cat([mel_emb, text_emb], dim=1)
|
||
|
|
||
|
enc = self.gpt(emb)
|
||
|
|
||
|
# Compute loss
|
||
|
text_logits = self.final_norm(enc[:, self.MAX_MEL_FRAMES:])
|
||
|
text_logits = self.text_head(text_logits)
|
||
|
text_logits = text_logits.permute(0,2,1)
|
||
|
loss_text = F.cross_entropy(text_logits[:,:,1:], text_targets[:,:-1].long())
|
||
|
|
||
|
return loss_text.mean()
|
||
|
|
||
|
|
||
|
@register_model
|
||
|
def register_gpt_asr(opt_net, opt):
|
||
|
return GptAsr(**opt_get(opt_net, ['kwargs'], {}))
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
gpt = GptAsr()
|
||
|
l = gpt(torch.randn(2,80,800),
|
||
|
torch.randint(high=len(symbols), size=(2,180)))
|
||
|
print(l.shape)
|
||
|
|
||
|
#o = gpt.infer(torch.randint(high=24, size=(2,60)))
|
||
|
#print(o.shape)
|
||
|
|
||
|
|