DL-Art-School/codes/models/audio/music/instrument_quantizer.py

171 lines
6.3 KiB
Python
Raw Normal View History

2022-07-18 00:24:33 +00:00
import functools
import torch
import torch.nn as nn
import torch.nn.functional as F
from models.diffusion.nn import timestep_embedding
from models.lucidrains.x_transformers import FeedForward, Attention, Decoder, RMSScaleShiftNorm
from trainer.networks import register_model
from utils.util import checkpoint
class SelfClassifyingHead(nn.Module):
def __init__(self, dim, classes, out_dim, head_depth, seq_len, dropout, init_temperature):
super().__init__()
self.seq_len = seq_len
self.num_classes = classes
self.temperature = init_temperature
self.dec = Decoder(dim=dim, depth=head_depth, heads=2, ff_dropout=dropout, ff_mult=2, attn_dropout=dropout,
use_rmsnorm=True, ff_glu=True, rotary_pos_emb=True)
self.to_classes = nn.Linear(dim, classes)
self.feedback_codebooks = nn.Linear(classes, dim, bias=False)
self.codebooks = nn.Linear(classes, out_dim, bias=False)
@staticmethod
def _compute_perplexity(probs, mask=None):
if mask is not None:
mask_extended = mask.flatten()[:, None, None].expand(probs.shape)
probs = torch.where(mask_extended, probs, torch.zeros_like(probs))
marginal_probs = probs.sum(dim=0) / mask.sum()
else:
marginal_probs = probs.mean(dim=0)
perplexity = torch.exp(-torch.sum(marginal_probs * torch.log(marginal_probs + 1e-7), dim=-1)).sum()
return perplexity
def do_ar_step(self, x, used_codes):
h = self.dec(x)
h = self.to_classes(h[:,-1])
for uc in used_codes:
mask = torch.arange(0, self.num_classes, device=x.device).unsqueeze(0).repeat(x.shape[0],1) == uc.unsqueeze(1)
h[mask] = -torch.inf
c = F.gumbel_softmax(h, tau=self.temperature, hard=self.temperature==1)\
soft_c = torch.softmax(h, dim=-1)
perplexity = self._compute_perplexity(soft_c)
return c, perplexity
def forward(self, x):
with torch.no_grad():
# Force one of the codebook weights to zero, allowing the model to "skip" any classes it chooses.
self.codebooks.weight.data[:, 0] = 0
# manually perform ar regression over sequence_length=self.seq_len
stack = [x]
outputs = []
results = []
codes = []
total_perplexity = 0
for i in range(self.seq_len):
nc, perp = checkpoint(functools.partial(self.do_ar_step, used_codes=codes), torch.stack(stack, dim=1))
codes.append(nc.argmax(-1))
stack.append(self.feedback_codebooks(nc))
outputs.append(self.codebooks(nc))
results.append(torch.stack(outputs, dim=1).sum(1))
total_perplexity = total_perplexity + perp
return results, total_perplexity / self.seq_len, torch.cat(codes, dim=-1)
class VectorResBlock(nn.Module):
def __init__(self, dim, dropout):
super().__init__()
self.norm = nn.BatchNorm1d(dim)
self.ff = FeedForward(dim, mult=2, glu=True, dropout=dropout, zero_init_output=True)
def forward(self, x):
h = self.norm(x.unsqueeze(-1)).squeeze(-1)
h = self.ff(h)
return h + x
class InstrumentQuantizer(nn.Module):
def __init__(self, op_dim, dim, num_classes, enc_depth, head_depth, class_seq_len=5, dropout=.1,
min_temp=1, max_temp=10, temp_decay=.999):
"""
Args:
op_dim:
dim:
num_classes:
enc_depth:
head_depth:
class_seq_len:
dropout:
min_temp:
max_temp:
temp_decay: Temperature decay. Default value of .999 decays ~50% in 1000 steps.
"""
super().__init__()
self.op_dim = op_dim
self.proj = nn.Linear(op_dim, dim)
self.encoder = nn.ModuleList([VectorResBlock(dim, dropout) for _ in range(enc_depth)])
self.heads = SelfClassifyingHead(dim, num_classes, op_dim, head_depth, class_seq_len, dropout, max_temp)
self.min_gumbel_temperature = min_temp
self.max_gumbel_temperature = max_temp
self.gumbel_temperature_decay = temp_decay
self.codes = torch.zeros((3000000,), dtype=torch.long)
self.internal_step = 0
self.code_ind = 0
self.total_codes = 0
def forward(self, x):
b, c, s = x.shape
px = x.permute(0,2,1) # B,S,C shape
f = px.reshape(-1, self.op_dim)
h = self.proj(f)
for lyr in self.encoder:
h = lyr(h)
reconstructions, perplexity, codes = self.heads(h)
reconstruction_losses = torch.stack([F.mse_loss(r.reshape(b, s, c), px) for r in reconstructions])
r_follow = torch.arange(1, reconstruction_losses.shape[0]+1, device=x.device)
reconstruction_losses = (reconstruction_losses * r_follow / r_follow.shape[0])
self.log_codes(codes)
return reconstruction_losses, perplexity
def log_codes(self, codes):
if self.internal_step % 5 == 0:
l = codes.shape[0]
i = self.code_ind if (self.codes.shape[0] - self.code_ind) > l else self.codes.shape[0] - l
self.codes[i:i+l] = codes.cpu()
self.code_ind = self.code_ind + l
if self.code_ind >= self.codes.shape[0]:
self.code_ind = 0
self.total_codes += 1
def get_debug_values(self, step, __):
if self.total_codes > 0:
return {'histogram_codes': self.codes[:self.total_codes],
'temperature': self.heads.temperature}
else:
return {}
def update_for_step(self, step, *args):
self.internal_step = step
self.heads.temperature = max(
self.max_gumbel_temperature * self.gumbel_temperature_decay**step,
self.min_gumbel_temperature,
)
def get_grad_norm_parameter_groups(self):
groups = {
'encoder': list(self.encoder.parameters()),
'heads': list(self.heads.parameters()),
'proj': list(self.proj.parameters()),
}
return groups
@register_model
def register_instrument_quantizer(opt_net, opt):
return InstrumentQuantizer(**opt_net['kwargs'])
if __name__ == '__main__':
inp = torch.randn((4,256,200))
model = InstrumentQuantizer(256, 512, 4096, 8, 3)
model(inp)