85 lines
3.4 KiB
Python
85 lines
3.4 KiB
Python
|
import os.path as osp
|
||
|
import torch
|
||
|
import torch.utils.data as data
|
||
|
import data.util as util
|
||
|
|
||
|
|
||
|
class VideoTestDataset(data.Dataset):
|
||
|
"""
|
||
|
A video test dataset. Support:
|
||
|
Vid4
|
||
|
REDS4
|
||
|
Vimeo90K-Test
|
||
|
|
||
|
no need to prepare LMDB files
|
||
|
"""
|
||
|
|
||
|
def __init__(self, opt):
|
||
|
super(VideoTestDataset, self).__init__()
|
||
|
self.opt = opt
|
||
|
self.cache_data = opt['cache_data']
|
||
|
self.half_N_frames = opt['N_frames'] // 2
|
||
|
self.GT_root, self.LQ_root = opt['dataroot_GT'], opt['dataroot_LQ']
|
||
|
self.data_type = self.opt['data_type']
|
||
|
self.data_info = {'path_LQ': [], 'path_GT': [], 'folder': [], 'idx': [], 'border': []}
|
||
|
if self.data_type == 'lmdb':
|
||
|
raise ValueError('No need to use LMDB during validation/test.')
|
||
|
#### Generate data info and cache data
|
||
|
self.imgs_LQ, self.imgs_GT = {}, {}
|
||
|
if opt['name'].lower() in ['vid4', 'reds4']:
|
||
|
subfolders_LQ = util.glob_file_list(self.LQ_root)
|
||
|
subfolders_GT = util.glob_file_list(self.GT_root)
|
||
|
for subfolder_LQ, subfolder_GT in zip(subfolders_LQ, subfolders_GT):
|
||
|
subfolder_name = osp.basename(subfolder_GT)
|
||
|
img_paths_LQ = util.glob_file_list(subfolder_LQ)
|
||
|
img_paths_GT = util.glob_file_list(subfolder_GT)
|
||
|
max_idx = len(img_paths_LQ)
|
||
|
assert max_idx == len(
|
||
|
img_paths_GT), 'Different number of images in LQ and GT folders'
|
||
|
self.data_info['path_LQ'].extend(img_paths_LQ)
|
||
|
self.data_info['path_GT'].extend(img_paths_GT)
|
||
|
self.data_info['folder'].extend([subfolder_name] * max_idx)
|
||
|
for i in range(max_idx):
|
||
|
self.data_info['idx'].append('{}/{}'.format(i, max_idx))
|
||
|
border_l = [0] * max_idx
|
||
|
for i in range(self.half_N_frames):
|
||
|
border_l[i] = 1
|
||
|
border_l[max_idx - i - 1] = 1
|
||
|
self.data_info['border'].extend(border_l)
|
||
|
|
||
|
if self.cache_data:
|
||
|
self.imgs_LQ[subfolder_name] = util.read_img_seq(img_paths_LQ)
|
||
|
self.imgs_GT[subfolder_name] = util.read_img_seq(img_paths_GT)
|
||
|
elif opt['name'].lower() in ['vimeo90k-test']:
|
||
|
pass # TODO
|
||
|
else:
|
||
|
raise ValueError(
|
||
|
'Not support video test dataset. Support Vid4, REDS4 and Vimeo90k-Test.')
|
||
|
|
||
|
def __getitem__(self, index):
|
||
|
# path_LQ = self.data_info['path_LQ'][index]
|
||
|
# path_GT = self.data_info['path_GT'][index]
|
||
|
folder = self.data_info['folder'][index]
|
||
|
idx, max_idx = self.data_info['idx'][index].split('/')
|
||
|
idx, max_idx = int(idx), int(max_idx)
|
||
|
border = self.data_info['border'][index]
|
||
|
|
||
|
if self.cache_data:
|
||
|
select_idx = util.index_generation(idx, max_idx, self.opt['N_frames'],
|
||
|
padding=self.opt['padding'])
|
||
|
imgs_LQ = self.imgs_LQ[folder].index_select(0, torch.LongTensor(select_idx))
|
||
|
img_GT = self.imgs_GT[folder][idx]
|
||
|
else:
|
||
|
pass # TODO
|
||
|
|
||
|
return {
|
||
|
'LQs': imgs_LQ,
|
||
|
'GT': img_GT,
|
||
|
'folder': folder,
|
||
|
'idx': self.data_info['idx'][index],
|
||
|
'border': border
|
||
|
}
|
||
|
|
||
|
def __len__(self):
|
||
|
return len(self.data_info['path_GT'])
|