2019-08-23 13:42:47 +00:00
|
|
|
import torch
|
|
|
|
import torch.nn as nn
|
|
|
|
import torchvision
|
2020-07-06 03:49:09 +00:00
|
|
|
from models.archs.arch_util import ConvBnLelu
|
2019-08-23 13:42:47 +00:00
|
|
|
|
|
|
|
|
|
|
|
class Discriminator_VGG_128(nn.Module):
|
2020-04-21 22:32:59 +00:00
|
|
|
# input_img_factor = multiplier to support images over 128x128. Only certain factors are supported.
|
2020-06-23 15:40:33 +00:00
|
|
|
def __init__(self, in_nc, nf, input_img_factor=1, extra_conv=False):
|
2019-08-23 13:42:47 +00:00
|
|
|
super(Discriminator_VGG_128, self).__init__()
|
|
|
|
# [64, 128, 128]
|
|
|
|
self.conv0_0 = nn.Conv2d(in_nc, nf, 3, 1, 1, bias=True)
|
|
|
|
self.conv0_1 = nn.Conv2d(nf, nf, 4, 2, 1, bias=False)
|
|
|
|
self.bn0_1 = nn.BatchNorm2d(nf, affine=True)
|
|
|
|
# [64, 64, 64]
|
2020-05-12 16:08:12 +00:00
|
|
|
self.conv1_0 = nn.Conv2d(nf, nf * 2, 3, 1, 1, bias=False)
|
2019-08-23 13:42:47 +00:00
|
|
|
self.bn1_0 = nn.BatchNorm2d(nf * 2, affine=True)
|
|
|
|
self.conv1_1 = nn.Conv2d(nf * 2, nf * 2, 4, 2, 1, bias=False)
|
|
|
|
self.bn1_1 = nn.BatchNorm2d(nf * 2, affine=True)
|
|
|
|
# [128, 32, 32]
|
2020-05-12 16:08:12 +00:00
|
|
|
self.conv2_0 = nn.Conv2d(nf * 2, nf * 4, 3, 1, 1, bias=False)
|
2019-08-23 13:42:47 +00:00
|
|
|
self.bn2_0 = nn.BatchNorm2d(nf * 4, affine=True)
|
|
|
|
self.conv2_1 = nn.Conv2d(nf * 4, nf * 4, 4, 2, 1, bias=False)
|
|
|
|
self.bn2_1 = nn.BatchNorm2d(nf * 4, affine=True)
|
|
|
|
# [256, 16, 16]
|
|
|
|
self.conv3_0 = nn.Conv2d(nf * 4, nf * 8, 3, 1, 1, bias=False)
|
|
|
|
self.bn3_0 = nn.BatchNorm2d(nf * 8, affine=True)
|
|
|
|
self.conv3_1 = nn.Conv2d(nf * 8, nf * 8, 4, 2, 1, bias=False)
|
|
|
|
self.bn3_1 = nn.BatchNorm2d(nf * 8, affine=True)
|
|
|
|
# [512, 8, 8]
|
|
|
|
self.conv4_0 = nn.Conv2d(nf * 8, nf * 8, 3, 1, 1, bias=False)
|
|
|
|
self.bn4_0 = nn.BatchNorm2d(nf * 8, affine=True)
|
|
|
|
self.conv4_1 = nn.Conv2d(nf * 8, nf * 8, 4, 2, 1, bias=False)
|
|
|
|
self.bn4_1 = nn.BatchNorm2d(nf * 8, affine=True)
|
2020-06-23 15:40:33 +00:00
|
|
|
final_nf = nf * 8
|
2019-08-23 13:42:47 +00:00
|
|
|
|
2020-06-23 15:40:33 +00:00
|
|
|
self.extra_conv = extra_conv
|
|
|
|
if self.extra_conv:
|
|
|
|
self.conv5_0 = nn.Conv2d(nf * 8, nf * 16, 3, 1, 1, bias=False)
|
|
|
|
self.bn5_0 = nn.BatchNorm2d(nf * 16, affine=True)
|
|
|
|
self.conv5_1 = nn.Conv2d(nf * 16, nf * 16, 4, 2, 1, bias=False)
|
|
|
|
self.bn5_1 = nn.BatchNorm2d(nf * 16, affine=True)
|
|
|
|
input_img_factor = input_img_factor // 2
|
|
|
|
final_nf = nf * 16
|
|
|
|
|
|
|
|
self.linear1 = nn.Linear(final_nf * 4 * input_img_factor * 4 * input_img_factor, 100)
|
2019-08-23 13:42:47 +00:00
|
|
|
self.linear2 = nn.Linear(100, 1)
|
|
|
|
|
|
|
|
# activation function
|
|
|
|
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
|
|
|
|
|
2020-04-30 17:45:07 +00:00
|
|
|
def forward(self, x):
|
2020-05-27 19:31:22 +00:00
|
|
|
x = x[0]
|
2019-08-23 13:42:47 +00:00
|
|
|
fea = self.lrelu(self.conv0_0(x))
|
|
|
|
fea = self.lrelu(self.bn0_1(self.conv0_1(fea)))
|
|
|
|
|
2020-05-12 16:08:12 +00:00
|
|
|
#fea = torch.cat([fea, skip_med], dim=1)
|
2019-08-23 13:42:47 +00:00
|
|
|
fea = self.lrelu(self.bn1_0(self.conv1_0(fea)))
|
|
|
|
fea = self.lrelu(self.bn1_1(self.conv1_1(fea)))
|
|
|
|
|
2020-05-12 16:08:12 +00:00
|
|
|
#fea = torch.cat([fea, skip_lo], dim=1)
|
2019-08-23 13:42:47 +00:00
|
|
|
fea = self.lrelu(self.bn2_0(self.conv2_0(fea)))
|
|
|
|
fea = self.lrelu(self.bn2_1(self.conv2_1(fea)))
|
|
|
|
|
|
|
|
fea = self.lrelu(self.bn3_0(self.conv3_0(fea)))
|
|
|
|
fea = self.lrelu(self.bn3_1(self.conv3_1(fea)))
|
|
|
|
|
|
|
|
fea = self.lrelu(self.bn4_0(self.conv4_0(fea)))
|
|
|
|
fea = self.lrelu(self.bn4_1(self.conv4_1(fea)))
|
|
|
|
|
2020-06-23 15:40:33 +00:00
|
|
|
if self.extra_conv:
|
|
|
|
fea = self.lrelu(self.bn5_0(self.conv5_0(fea)))
|
|
|
|
fea = self.lrelu(self.bn5_1(self.conv5_1(fea)))
|
|
|
|
|
2020-06-16 20:27:16 +00:00
|
|
|
fea = fea.contiguous().view(fea.size(0), -1)
|
2019-08-23 13:42:47 +00:00
|
|
|
fea = self.lrelu(self.linear1(fea))
|
|
|
|
out = self.linear2(fea)
|
|
|
|
return out
|
|
|
|
|
2020-07-06 03:49:09 +00:00
|
|
|
|
|
|
|
class Discriminator_VGG_PixLoss(nn.Module):
|
|
|
|
def __init__(self, in_nc, nf):
|
|
|
|
super(Discriminator_VGG_PixLoss, self).__init__()
|
|
|
|
# [64, 128, 128]
|
|
|
|
self.conv0_0 = nn.Conv2d(in_nc, nf, 3, 1, 1, bias=True)
|
|
|
|
self.conv0_1 = nn.Conv2d(nf, nf, 4, 2, 1, bias=False)
|
|
|
|
self.bn0_1 = nn.BatchNorm2d(nf, affine=True)
|
|
|
|
# [64, 64, 64]
|
|
|
|
self.conv1_0 = nn.Conv2d(nf, nf * 2, 3, 1, 1, bias=False)
|
|
|
|
self.bn1_0 = nn.BatchNorm2d(nf * 2, affine=True)
|
|
|
|
self.conv1_1 = nn.Conv2d(nf * 2, nf * 2, 4, 2, 1, bias=False)
|
|
|
|
self.bn1_1 = nn.BatchNorm2d(nf * 2, affine=True)
|
|
|
|
# [128, 32, 32]
|
|
|
|
self.conv2_0 = nn.Conv2d(nf * 2, nf * 4, 3, 1, 1, bias=False)
|
|
|
|
self.bn2_0 = nn.BatchNorm2d(nf * 4, affine=True)
|
|
|
|
self.conv2_1 = nn.Conv2d(nf * 4, nf * 4, 4, 2, 1, bias=False)
|
|
|
|
self.bn2_1 = nn.BatchNorm2d(nf * 4, affine=True)
|
|
|
|
# [256, 16, 16]
|
|
|
|
self.conv3_0 = nn.Conv2d(nf * 4, nf * 8, 3, 1, 1, bias=False)
|
|
|
|
self.bn3_0 = nn.BatchNorm2d(nf * 8, affine=True)
|
|
|
|
self.conv3_1 = nn.Conv2d(nf * 8, nf * 8, 4, 2, 1, bias=False)
|
|
|
|
self.bn3_1 = nn.BatchNorm2d(nf * 8, affine=True)
|
|
|
|
# [512, 8, 8]
|
|
|
|
self.conv4_0 = nn.Conv2d(nf * 8, nf * 8, 3, 1, 1, bias=False)
|
|
|
|
self.bn4_0 = nn.BatchNorm2d(nf * 8, affine=True)
|
|
|
|
self.conv4_1 = nn.Conv2d(nf * 8, nf * 8, 4, 2, 1, bias=False)
|
|
|
|
self.bn4_1 = nn.BatchNorm2d(nf * 8, affine=True)
|
|
|
|
|
|
|
|
self.reduce_1 = ConvBnLelu(nf * 8, nf * 4, bias=False)
|
|
|
|
self.pix_loss_collapse = ConvBnLelu(nf * 4, 1, bias=False)
|
|
|
|
|
|
|
|
# activation function
|
|
|
|
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
x = x[0]
|
|
|
|
fea = self.lrelu(self.conv0_0(x))
|
|
|
|
fea = self.lrelu(self.bn0_1(self.conv0_1(fea)))
|
|
|
|
|
|
|
|
fea = self.lrelu(self.bn1_0(self.conv1_0(fea)))
|
|
|
|
fea = self.lrelu(self.bn1_1(self.conv1_1(fea)))
|
|
|
|
|
|
|
|
fea = self.lrelu(self.bn2_0(self.conv2_0(fea)))
|
|
|
|
fea = self.lrelu(self.bn2_1(self.conv2_1(fea)))
|
|
|
|
|
|
|
|
fea = self.lrelu(self.bn3_0(self.conv3_0(fea)))
|
|
|
|
fea = self.lrelu(self.bn3_1(self.conv3_1(fea)))
|
|
|
|
|
|
|
|
fea = self.lrelu(self.bn4_0(self.conv4_0(fea)))
|
|
|
|
fea = self.lrelu(self.bn4_1(self.conv4_1(fea)))
|
|
|
|
|
|
|
|
loss = self.reduce_1(fea)
|
|
|
|
loss = self.pix_loss_collapse(loss)
|
|
|
|
|
|
|
|
# Compress all of the loss values into the batch dimension. The actual loss attached to this output will
|
|
|
|
# then know how to handle them.
|
|
|
|
return loss.view(-1, 1)
|
|
|
|
|