2021-08-19 00:29:38 +00:00
|
|
|
import pathlib
|
|
|
|
|
2021-08-17 15:09:11 +00:00
|
|
|
import numpy
|
|
|
|
import torch
|
|
|
|
from scipy.io import wavfile
|
2021-08-19 00:29:38 +00:00
|
|
|
from tqdm import tqdm
|
2021-08-17 15:09:11 +00:00
|
|
|
|
|
|
|
from models.waveglow.waveglow import WaveGlow
|
|
|
|
|
|
|
|
|
|
|
|
class Vocoder:
|
|
|
|
def __init__(self):
|
|
|
|
self.model = WaveGlow(n_mel_channels=80, n_flows=12, n_group=8, n_early_size=2, n_early_every=4, WN_config={'n_layers': 8, 'n_channels': 256, 'kernel_size': 3})
|
|
|
|
sd = torch.load('../experiments/waveglow_256channels_universal_v5.pth')
|
|
|
|
self.model.load_state_dict(sd)
|
|
|
|
self.model = self.model.to('cuda')
|
|
|
|
self.model.eval()
|
|
|
|
|
|
|
|
def transform_mel_to_audio(self, mel):
|
|
|
|
if len(mel.shape) == 2: # Assume it's missing the batch dimension and fix that.
|
|
|
|
mel = mel.unsqueeze(0)
|
|
|
|
with torch.no_grad():
|
|
|
|
return self.model.infer(mel)
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
2021-08-19 00:29:38 +00:00
|
|
|
path = 'data/audio'
|
|
|
|
files = list(pathlib.Path(path).glob('*.npy'))
|
|
|
|
|
|
|
|
for inp in tqdm(files):
|
|
|
|
inp = str(inp)
|
|
|
|
mel = torch.tensor(numpy.load(inp)).to('cuda')
|
|
|
|
vocoder = Vocoder()
|
|
|
|
wav = vocoder.transform_mel_to_audio(mel)
|
|
|
|
wavfile.write(f'{inp}.wav', 22050, wav[0].cpu().numpy())
|