DL-Art-School/codes/train.py

325 lines
15 KiB
Python
Raw Normal View History

2019-08-23 13:42:47 +00:00
import os
import math
import argparse
import random
import logging
2020-04-30 17:30:55 +00:00
import shutil
2020-04-22 06:38:53 +00:00
from tqdm import tqdm
2019-08-23 13:42:47 +00:00
import torch
2020-04-22 06:38:53 +00:00
#import torch.distributed as dist
#import torch.multiprocessing as mp
2019-08-23 13:42:47 +00:00
from data.data_sampler import DistIterSampler
import options.options as option
from utils import util
from data import create_dataloader, create_dataset
from models import create_model
def init_dist(backend='nccl', **kwargs):
"""initialization for distributed training"""
if mp.get_start_method(allow_none=True) != 'spawn':
mp.set_start_method('spawn')
rank = int(os.environ['RANK'])
num_gpus = torch.cuda.device_count()
torch.cuda.set_device(rank % num_gpus)
dist.init_process_group(backend=backend, **kwargs)
def main():
#### options
parser = argparse.ArgumentParser()
2020-05-27 14:04:47 +00:00
parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/finetune_hoh_resgen_xl_blurring.yml')
2019-08-23 13:42:47 +00:00
parser.add_argument('--launcher', choices=['none', 'pytorch'], default='none',
help='job launcher')
parser.add_argument('--local_rank', type=int, default=0)
args = parser.parse_args()
opt = option.parse(args.opt, is_train=True)
#### distributed training settings
if args.launcher == 'none': # disabled distributed training
opt['dist'] = False
rank = -1
print('Disabled distributed training.')
else:
opt['dist'] = True
init_dist()
world_size = torch.distributed.get_world_size()
rank = torch.distributed.get_rank()
#### loading resume state if exists
if opt['path'].get('resume_state', None):
# distributed resuming: all load into default GPU
device_id = torch.cuda.current_device()
resume_state = torch.load(opt['path']['resume_state'],
map_location=lambda storage, loc: storage.cuda(device_id))
option.check_resume(opt, resume_state['iter']) # check resume options
else:
resume_state = None
#### mkdir and loggers
if rank <= 0: # normal training (rank -1) OR distributed training (rank 0)
if resume_state is None:
util.mkdir_and_rename(
opt['path']['experiments_root']) # rename experiment folder if exists
util.mkdirs((path for key, path in opt['path'].items() if not key == 'experiments_root'
and 'pretrain_model' not in key and 'resume' not in key))
# config loggers. Before it, the log will not work
util.setup_logger('base', opt['path']['log'], 'train_' + opt['name'], level=logging.INFO,
screen=True, tofile=True)
logger = logging.getLogger('base')
logger.info(option.dict2str(opt))
# tensorboard logger
if opt['use_tb_logger'] and 'debug' not in opt['name']:
2020-04-30 18:35:51 +00:00
tb_logger_path = '../tb_logger/' + opt['name']
2020-04-30 17:30:55 +00:00
# If not resuming, delete the existing logs. Tensorboard doesn't do too great with these.
2020-04-30 18:35:51 +00:00
if opt['path'].get('resume_state', None) is None:
2020-04-30 17:30:55 +00:00
if os.path.exists(tb_logger_path) and os.path.isdir(tb_logger_path):
shutil.rmtree(tb_logger_path)
2019-08-23 13:42:47 +00:00
version = float(torch.__version__[0:3])
if version >= 1.1: # PyTorch 1.1
from torch.utils.tensorboard import SummaryWriter
else:
logger.info(
'You are using PyTorch {}. Tensorboard will use [tensorboardX]'.format(version))
from tensorboardX import SummaryWriter
2020-04-30 17:30:55 +00:00
tb_logger = SummaryWriter(log_dir=tb_logger_path)
2019-08-23 13:42:47 +00:00
else:
util.setup_logger('base', opt['path']['log'], 'train', level=logging.INFO, screen=True)
logger = logging.getLogger('base')
# convert to NoneDict, which returns None for missing keys
opt = option.dict_to_nonedict(opt)
#### random seed
seed = opt['train']['manual_seed']
if seed is None:
seed = random.randint(1, 10000)
if rank <= 0:
logger.info('Random seed: {}'.format(seed))
util.set_random_seed(seed)
torch.backends.cudnn.benchmark = True
# torch.backends.cudnn.deterministic = True
#### create train and val dataloader
dataset_ratio = 200 # enlarge the size of each epoch
for phase, dataset_opt in opt['datasets'].items():
if phase == 'train':
train_set = create_dataset(dataset_opt)
train_size = int(math.ceil(len(train_set) / dataset_opt['batch_size']))
total_iters = int(opt['train']['niter'])
total_epochs = int(math.ceil(total_iters / train_size))
if opt['dist']:
train_sampler = DistIterSampler(train_set, world_size, rank, dataset_ratio)
total_epochs = int(math.ceil(total_iters / (train_size * dataset_ratio)))
else:
train_sampler = None
train_loader = create_dataloader(train_set, dataset_opt, opt, train_sampler)
if rank <= 0:
logger.info('Number of train images: {:,d}, iters: {:,d}'.format(
len(train_set), train_size))
logger.info('Total epochs needed: {:d} for iters {:,d}'.format(
total_epochs, total_iters))
elif phase == 'val':
val_set = create_dataset(dataset_opt)
val_loader = create_dataloader(val_set, dataset_opt, opt, None)
if rank <= 0:
logger.info('Number of val images in [{:s}]: {:d}'.format(
dataset_opt['name'], len(val_set)))
else:
raise NotImplementedError('Phase [{:s}] is not recognized.'.format(phase))
assert train_loader is not None
#### create model
model = create_model(opt)
#### resume training
if resume_state:
logger.info('Resuming training from epoch: {}, iter: {}.'.format(
resume_state['epoch'], resume_state['iter']))
start_epoch = resume_state['epoch']
current_step = resume_state['iter']
model.resume_training(resume_state) # handle optimizers and schedulers
else:
current_step = -1
2019-08-23 13:42:47 +00:00
start_epoch = 0
#### training
logger.info('Start training from epoch: {:d}, iter: {:d}'.format(start_epoch, current_step))
for epoch in range(start_epoch, total_epochs + 1):
if opt['dist']:
train_sampler.set_epoch(epoch)
2020-04-22 06:38:53 +00:00
tq_ldr = tqdm(train_loader)
for _, train_data in enumerate(tq_ldr):
2019-08-23 13:42:47 +00:00
current_step += 1
if current_step > total_iters:
break
#### update learning rate
model.update_learning_rate(current_step, warmup_iter=opt['train']['warmup_iter'])
#### training
model.feed_data(train_data)
model.optimize_parameters(current_step)
#### log
if current_step % opt['logger']['print_freq'] == 0:
logs = model.get_current_log()
message = '[epoch:{:3d}, iter:{:8,d}, lr:('.format(epoch, current_step)
for v in model.get_current_learning_rate():
message += '{:.3e},'.format(v)
message += ')] '
for k, v in logs.items():
message += '{:s}: {:.4e} '.format(k, v)
# tensorboard logger
if opt['use_tb_logger'] and 'debug' not in opt['name']:
if rank <= 0:
tb_logger.add_scalar(k, v, current_step)
if rank <= 0:
logger.info(message)
#### validation
if opt['datasets'].get('val', None) and current_step % opt['train']['val_freq'] == 0:
if opt['model'] in ['sr', 'srgan', 'corruptgan'] and rank <= 0: # image restoration validation
model.force_restore_swapout()
2019-08-23 13:42:47 +00:00
# does not support multi-GPU validation
pbar = util.ProgressBar(len(val_loader))
avg_psnr = 0.
idx = 0
for val_data in val_loader:
idx += 1
2020-05-02 01:56:14 +00:00
if idx >= 20:
break
2019-08-23 13:42:47 +00:00
img_name = os.path.splitext(os.path.basename(val_data['LQ_path'][0]))[0]
img_dir = os.path.join(opt['path']['val_images'], img_name)
util.mkdir(img_dir)
model.feed_data(val_data)
model.test()
visuals = model.get_current_visuals()
2019-08-23 13:42:47 +00:00
sr_img = util.tensor2img(visuals['rlt']) # uint8
gt_img = util.tensor2img(visuals['GT']) # uint8
# Save SR images for reference
save_img_path = os.path.join(img_dir,
'{:s}_{:d}.png'.format(img_name, current_step))
util.save_img(sr_img, save_img_path)
# calculate PSNR
sr_img, gt_img = util.crop_border([sr_img, gt_img], opt['scale'])
avg_psnr += util.calculate_psnr(sr_img, gt_img)
pbar.update('Test {}'.format(img_name))
avg_psnr = avg_psnr / idx
# log
logger.info('# Validation # PSNR: {:.4e}'.format(avg_psnr))
# tensorboard logger
if opt['use_tb_logger'] and 'debug' not in opt['name']:
tb_logger.add_scalar('psnr', avg_psnr, current_step)
else: # video restoration validation
if opt['dist']:
# multi-GPU testing
psnr_rlt = {} # with border and center frames
if rank == 0:
pbar = util.ProgressBar(len(val_set))
for idx in range(rank, len(val_set), world_size):
val_data = val_set[idx]
val_data['LQs'].unsqueeze_(0)
val_data['GT'].unsqueeze_(0)
folder = val_data['folder']
idx_d, max_idx = val_data['idx'].split('/')
idx_d, max_idx = int(idx_d), int(max_idx)
if psnr_rlt.get(folder, None) is None:
psnr_rlt[folder] = torch.zeros(max_idx, dtype=torch.float32,
device='cuda')
# tmp = torch.zeros(max_idx, dtype=torch.float32, device='cuda')
model.feed_data(val_data)
model.test()
visuals = model.get_current_visuals()
rlt_img = util.tensor2img(visuals['rlt']) # uint8
gt_img = util.tensor2img(visuals['GT']) # uint8
# calculate PSNR
psnr_rlt[folder][idx_d] = util.calculate_psnr(rlt_img, gt_img)
if rank == 0:
for _ in range(world_size):
pbar.update('Test {} - {}/{}'.format(folder, idx_d, max_idx))
# # collect data
for _, v in psnr_rlt.items():
dist.reduce(v, 0)
dist.barrier()
if rank == 0:
psnr_rlt_avg = {}
psnr_total_avg = 0.
for k, v in psnr_rlt.items():
psnr_rlt_avg[k] = torch.mean(v).cpu().item()
psnr_total_avg += psnr_rlt_avg[k]
psnr_total_avg /= len(psnr_rlt)
log_s = '# Validation # PSNR: {:.4e}:'.format(psnr_total_avg)
for k, v in psnr_rlt_avg.items():
log_s += ' {}: {:.4e}'.format(k, v)
logger.info(log_s)
if opt['use_tb_logger'] and 'debug' not in opt['name']:
tb_logger.add_scalar('psnr_avg', psnr_total_avg, current_step)
for k, v in psnr_rlt_avg.items():
tb_logger.add_scalar(k, v, current_step)
else:
pbar = util.ProgressBar(len(val_loader))
psnr_rlt = {} # with border and center frames
psnr_rlt_avg = {}
psnr_total_avg = 0.
for val_data in val_loader:
folder = val_data['folder'][0]
idx_d = val_data['idx'].item()
# border = val_data['border'].item()
if psnr_rlt.get(folder, None) is None:
psnr_rlt[folder] = []
model.feed_data(val_data)
model.test()
visuals = model.get_current_visuals()
rlt_img = util.tensor2img(visuals['rlt']) # uint8
gt_img = util.tensor2img(visuals['GT']) # uint8
# calculate PSNR
psnr = util.calculate_psnr(rlt_img, gt_img)
psnr_rlt[folder].append(psnr)
pbar.update('Test {} - {}'.format(folder, idx_d))
for k, v in psnr_rlt.items():
psnr_rlt_avg[k] = sum(v) / len(v)
psnr_total_avg += psnr_rlt_avg[k]
psnr_total_avg /= len(psnr_rlt)
log_s = '# Validation # PSNR: {:.4e}:'.format(psnr_total_avg)
for k, v in psnr_rlt_avg.items():
log_s += ' {}: {:.4e}'.format(k, v)
logger.info(log_s)
if opt['use_tb_logger'] and 'debug' not in opt['name']:
tb_logger.add_scalar('psnr_avg', psnr_total_avg, current_step)
for k, v in psnr_rlt_avg.items():
tb_logger.add_scalar(k, v, current_step)
#### save models and training states
if current_step % opt['logger']['save_checkpoint_freq'] == 0:
if rank <= 0:
logger.info('Saving models and training states.')
model.save(current_step)
model.save_training_state(epoch, current_step)
if rank <= 0:
logger.info('Saving the final model.')
model.save('latest')
logger.info('End of training.')
tb_logger.close()
if __name__ == '__main__':
main()