DL-Art-School/codes/models/archs/discriminator_vgg_arch.py

139 lines
5.8 KiB
Python
Raw Normal View History

2019-08-23 13:42:47 +00:00
import torch
import torch.nn as nn
import torchvision
2020-07-06 03:49:09 +00:00
from models.archs.arch_util import ConvBnLelu
2019-08-23 13:42:47 +00:00
class Discriminator_VGG_128(nn.Module):
2020-04-21 22:32:59 +00:00
# input_img_factor = multiplier to support images over 128x128. Only certain factors are supported.
def __init__(self, in_nc, nf, input_img_factor=1, extra_conv=False):
2019-08-23 13:42:47 +00:00
super(Discriminator_VGG_128, self).__init__()
# [64, 128, 128]
self.conv0_0 = nn.Conv2d(in_nc, nf, 3, 1, 1, bias=True)
self.conv0_1 = nn.Conv2d(nf, nf, 4, 2, 1, bias=False)
self.bn0_1 = nn.BatchNorm2d(nf, affine=True)
# [64, 64, 64]
2020-05-12 16:08:12 +00:00
self.conv1_0 = nn.Conv2d(nf, nf * 2, 3, 1, 1, bias=False)
2019-08-23 13:42:47 +00:00
self.bn1_0 = nn.BatchNorm2d(nf * 2, affine=True)
self.conv1_1 = nn.Conv2d(nf * 2, nf * 2, 4, 2, 1, bias=False)
self.bn1_1 = nn.BatchNorm2d(nf * 2, affine=True)
# [128, 32, 32]
2020-05-12 16:08:12 +00:00
self.conv2_0 = nn.Conv2d(nf * 2, nf * 4, 3, 1, 1, bias=False)
2019-08-23 13:42:47 +00:00
self.bn2_0 = nn.BatchNorm2d(nf * 4, affine=True)
self.conv2_1 = nn.Conv2d(nf * 4, nf * 4, 4, 2, 1, bias=False)
self.bn2_1 = nn.BatchNorm2d(nf * 4, affine=True)
# [256, 16, 16]
self.conv3_0 = nn.Conv2d(nf * 4, nf * 8, 3, 1, 1, bias=False)
self.bn3_0 = nn.BatchNorm2d(nf * 8, affine=True)
self.conv3_1 = nn.Conv2d(nf * 8, nf * 8, 4, 2, 1, bias=False)
self.bn3_1 = nn.BatchNorm2d(nf * 8, affine=True)
# [512, 8, 8]
self.conv4_0 = nn.Conv2d(nf * 8, nf * 8, 3, 1, 1, bias=False)
self.bn4_0 = nn.BatchNorm2d(nf * 8, affine=True)
self.conv4_1 = nn.Conv2d(nf * 8, nf * 8, 4, 2, 1, bias=False)
self.bn4_1 = nn.BatchNorm2d(nf * 8, affine=True)
final_nf = nf * 8
2019-08-23 13:42:47 +00:00
self.extra_conv = extra_conv
if self.extra_conv:
self.conv5_0 = nn.Conv2d(nf * 8, nf * 16, 3, 1, 1, bias=False)
self.bn5_0 = nn.BatchNorm2d(nf * 16, affine=True)
self.conv5_1 = nn.Conv2d(nf * 16, nf * 16, 4, 2, 1, bias=False)
self.bn5_1 = nn.BatchNorm2d(nf * 16, affine=True)
input_img_factor = input_img_factor // 2
final_nf = nf * 16
self.linear1 = nn.Linear(final_nf * 4 * input_img_factor * 4 * input_img_factor, 100)
2019-08-23 13:42:47 +00:00
self.linear2 = nn.Linear(100, 1)
# activation function
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
def forward(self, x):
2020-05-27 19:31:22 +00:00
x = x[0]
2019-08-23 13:42:47 +00:00
fea = self.lrelu(self.conv0_0(x))
fea = self.lrelu(self.bn0_1(self.conv0_1(fea)))
2020-05-12 16:08:12 +00:00
#fea = torch.cat([fea, skip_med], dim=1)
2019-08-23 13:42:47 +00:00
fea = self.lrelu(self.bn1_0(self.conv1_0(fea)))
fea = self.lrelu(self.bn1_1(self.conv1_1(fea)))
2020-05-12 16:08:12 +00:00
#fea = torch.cat([fea, skip_lo], dim=1)
2019-08-23 13:42:47 +00:00
fea = self.lrelu(self.bn2_0(self.conv2_0(fea)))
fea = self.lrelu(self.bn2_1(self.conv2_1(fea)))
fea = self.lrelu(self.bn3_0(self.conv3_0(fea)))
fea = self.lrelu(self.bn3_1(self.conv3_1(fea)))
fea = self.lrelu(self.bn4_0(self.conv4_0(fea)))
fea = self.lrelu(self.bn4_1(self.conv4_1(fea)))
if self.extra_conv:
fea = self.lrelu(self.bn5_0(self.conv5_0(fea)))
fea = self.lrelu(self.bn5_1(self.conv5_1(fea)))
fea = fea.contiguous().view(fea.size(0), -1)
2019-08-23 13:42:47 +00:00
fea = self.lrelu(self.linear1(fea))
out = self.linear2(fea)
return out
2020-07-06 03:49:09 +00:00
class Discriminator_VGG_PixLoss(nn.Module):
def __init__(self, in_nc, nf):
super(Discriminator_VGG_PixLoss, self).__init__()
# [64, 128, 128]
self.conv0_0 = nn.Conv2d(in_nc, nf, 3, 1, 1, bias=True)
self.conv0_1 = nn.Conv2d(nf, nf, 4, 2, 1, bias=False)
self.bn0_1 = nn.BatchNorm2d(nf, affine=True)
# [64, 64, 64]
self.conv1_0 = nn.Conv2d(nf, nf * 2, 3, 1, 1, bias=False)
self.bn1_0 = nn.BatchNorm2d(nf * 2, affine=True)
self.conv1_1 = nn.Conv2d(nf * 2, nf * 2, 4, 2, 1, bias=False)
self.bn1_1 = nn.BatchNorm2d(nf * 2, affine=True)
# [128, 32, 32]
self.conv2_0 = nn.Conv2d(nf * 2, nf * 4, 3, 1, 1, bias=False)
self.bn2_0 = nn.BatchNorm2d(nf * 4, affine=True)
self.conv2_1 = nn.Conv2d(nf * 4, nf * 4, 4, 2, 1, bias=False)
self.bn2_1 = nn.BatchNorm2d(nf * 4, affine=True)
# [256, 16, 16]
self.conv3_0 = nn.Conv2d(nf * 4, nf * 8, 3, 1, 1, bias=False)
self.bn3_0 = nn.BatchNorm2d(nf * 8, affine=True)
self.conv3_1 = nn.Conv2d(nf * 8, nf * 8, 4, 2, 1, bias=False)
self.bn3_1 = nn.BatchNorm2d(nf * 8, affine=True)
# [512, 8, 8]
self.conv4_0 = nn.Conv2d(nf * 8, nf * 8, 3, 1, 1, bias=False)
self.bn4_0 = nn.BatchNorm2d(nf * 8, affine=True)
self.conv4_1 = nn.Conv2d(nf * 8, nf * 8, 4, 2, 1, bias=False)
self.bn4_1 = nn.BatchNorm2d(nf * 8, affine=True)
self.reduce_1 = ConvBnLelu(nf * 8, nf * 4, bias=False)
self.pix_loss_collapse = ConvBnLelu(nf * 4, 1, bias=False)
# activation function
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
def forward(self, x):
x = x[0]
fea = self.lrelu(self.conv0_0(x))
fea = self.lrelu(self.bn0_1(self.conv0_1(fea)))
fea = self.lrelu(self.bn1_0(self.conv1_0(fea)))
fea = self.lrelu(self.bn1_1(self.conv1_1(fea)))
fea = self.lrelu(self.bn2_0(self.conv2_0(fea)))
fea = self.lrelu(self.bn2_1(self.conv2_1(fea)))
fea = self.lrelu(self.bn3_0(self.conv3_0(fea)))
fea = self.lrelu(self.bn3_1(self.conv3_1(fea)))
fea = self.lrelu(self.bn4_0(self.conv4_0(fea)))
fea = self.lrelu(self.bn4_1(self.conv4_1(fea)))
loss = self.reduce_1(fea)
loss = self.pix_loss_collapse(loss)
# Compress all of the loss values into the batch dimension. The actual loss attached to this output will
# then know how to handle them.
return loss.view(-1, 1)