27 lines
999 B
Python
27 lines
999 B
Python
|
import argparse
|
||
|
import os
|
||
|
|
||
|
import torch
|
||
|
import torchvision
|
||
|
|
||
|
import utils.options as option
|
||
|
from scripts.ui.image_labeler.pretrained_image_patch_classifier import PretrainedImagePatchClassifier
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
#### options
|
||
|
torch.backends.cudnn.benchmark = True
|
||
|
want_metrics = False
|
||
|
parser = argparse.ArgumentParser()
|
||
|
parser.add_argument('-opt', type=str, help='Path to options YAML file.', default='../options/train_imgset_structural_classifier.yml')
|
||
|
|
||
|
classifier = PretrainedImagePatchClassifier(parser.parse_args().opt)
|
||
|
label_to_search_for = 4
|
||
|
step = 1
|
||
|
for hq, res in classifier.get_next_sample():
|
||
|
res = torch.nn.functional.interpolate(res, size=hq.shape[2:], mode="nearest")
|
||
|
res_lbl = res[:, label_to_search_for, :, :].unsqueeze(1)
|
||
|
res_lbl_mask = (1.0 * (res_lbl > .5))*.5 + .5
|
||
|
hq = hq * res_lbl_mask
|
||
|
torchvision.utils.save_image(hq, os.path.join(classifier.dataset_dir, "%i.png" % (step,)))
|
||
|
step += 1
|