2021-12-28 16:00:53 +00:00
import functools
2022-01-01 07:16:30 +00:00
from math import log
2021-12-28 16:00:53 +00:00
import torch
import torch . nn as nn
import torch . nn . functional as F
from transformers import GPT2Model , GPT2Config
from models . arch_util import AttentionBlock
from models . gpt_voice . gpt_asr_hf import GPT2InferenceModel
from models . tacotron2 . text import symbols
from trainer . networks import register_model
from utils . util import opt_get
2022-01-01 07:16:30 +00:00
def null_position_embeddings ( range , dim ) :
return torch . zeros ( ( range . shape [ 0 ] , range . shape [ 1 ] , dim ) , device = range . device )
2021-12-28 16:00:53 +00:00
class ConditioningEncoder ( nn . Module ) :
def __init__ ( self ,
spec_dim ,
embedding_dim ,
attn_blocks = 6 ,
num_attn_heads = 4 ,
do_checkpointing = False ) :
super ( ) . __init__ ( )
attn = [ ]
self . init = nn . Conv1d ( spec_dim , embedding_dim , kernel_size = 1 )
for a in range ( attn_blocks ) :
attn . append ( AttentionBlock ( embedding_dim , num_attn_heads , do_checkpoint = do_checkpointing ) )
self . attn = nn . Sequential ( * attn )
self . dim = embedding_dim
self . do_checkpointing = do_checkpointing
def forward ( self , x ) :
h = self . init ( x )
h = self . attn ( h )
return h [ : , : , 0 ]
2022-01-01 07:16:30 +00:00
class TopEncoder ( nn . Module ) :
def __init__ ( self , layers , dim , heads , do_checkpointing = False , dim_reduction = 16 ) :
self . init = nn . Conv1d ( dim , dim , kernel_size = 1 )
reduction_layers = [ ]
for j in range ( int ( log ( dim_reduction , 2 ) ) ) :
reduction_layers . append ( AttentionBlock ( dim , heads , do_checkpoint = do_checkpointing ) )
reduction_layers . append ( nn . Conv1d ( dim , dim , kernel_size = 3 , padding = 1 , stride = 2 ) )
self . reduction_layers = nn . Sequential ( * reduction_layers )
actual_layers = [ AttentionBlock ( dim , heads , do_checkpoint = do_checkpointing ) for _ in range ( layers ) ]
self . actual_layers = nn . Sequential ( * actual_layers )
def forward ( self , x ) :
h = self . init ( x )
h = self . reduction_layers ( h )
h = self . actual_layers ( h )
return h
2021-12-28 16:00:53 +00:00
class UnifiedGptVoice ( nn . Module ) :
"""
Derived from GptTtsHf , but offers multiple modes of autoregressive operation :
- Text only
- Voice only
- Text conditioned on voice
- Voice conditioned on text
"""
2022-01-01 07:16:30 +00:00
def __init__ ( self , top_encoder_layers = 4 , top_layers = 8 , bottom_layers = 8 , top_dim_reduction = 16 , model_dim = 512 , heads = 8 ,
max_symbols_per_phrase = 120 , max_mel_tokens = 250 , max_total_tokens = 370 , max_conditioning_inputs = 3 ,
2021-12-28 16:00:53 +00:00
checkpointing = True , mel_length_compression = 1024 , max_conditioning_length = 60 , number_text_tokens = 256 ,
start_text_token = 255 , stop_text_token = 0 , number_mel_codes = 8194 , start_mel_token = 8192 ,
stop_mel_token = 8193 ) :
super ( ) . __init__ ( )
self . number_text_tokens = number_text_tokens
self . start_text_token = start_text_token
self . stop_text_token = stop_text_token
self . number_mel_codes = number_mel_codes
self . start_mel_token = start_mel_token
self . stop_mel_token = stop_mel_token
self . max_mel_tokens = max_mel_tokens
self . max_symbols_per_phrase = max_symbols_per_phrase
self . max_total_tokens = max_total_tokens
self . model_dim = model_dim
self . max_conditioning_inputs = max_conditioning_inputs
self . mel_length_compression = mel_length_compression
self . conditioning_encoder = ConditioningEncoder ( 80 , model_dim , num_attn_heads = heads )
self . text_embedding = nn . Embedding ( self . number_text_tokens , model_dim )
self . text_pos_solo_embedding = nn . Embedding ( self . max_symbols_per_phrase + 1 , model_dim )
self . text_pos_paired_embedding = nn . Embedding ( self . max_symbols_per_phrase + 1 , model_dim )
self . mel_pos_solo_embedding = nn . Embedding ( self . max_mel_tokens + 1 , model_dim )
self . mel_pos_paired_embedding = nn . Embedding ( self . max_mel_tokens + 1 , model_dim )
seq_length = 2 + self . max_total_tokens + self . max_conditioning_inputs
2022-01-01 07:16:30 +00:00
self . top_encoder = TopEncoder ( top_encoder_layers , model_dim , heads , do_checkpointing = checkpointing ,
dim_reduction = top_dim_reduction )
self . top_gpt_config = GPT2Config ( vocab_size = 1 ,
n_positions = seq_length / / top_dim_reduction ,
n_ctx = seq_length / / top_dim_reduction ,
n_embd = model_dim ,
n_layer = top_layers ,
n_head = heads ,
gradient_checkpointing = checkpointing ,
use_cache = not checkpointing )
self . top_gpt = GPT2Model ( self . top_gpt_config )
del self . top_gpt . wte
self . top_gpt_start_embedding = nn . Parameter ( torch . randn ( 1 , 1 , model_dim ) * self . top_gpt_config . initializer_range ,
requires_grad = True )
self . top_dim_reduction = top_dim_reduction
self . bottom_gpt_config = GPT2Config ( vocab_size = self . number_mel_codes ,
n_positions = seq_length ,
n_ctx = seq_length ,
n_embd = model_dim ,
n_layer = bottom_layers ,
n_head = heads ,
gradient_checkpointing = checkpointing ,
use_cache = not checkpointing )
self . bottom_gpt = GPT2Model ( self . bottom_gpt_config )
2021-12-28 16:00:53 +00:00
# Override the built in positional embeddings
2022-01-01 07:16:30 +00:00
del self . bottom_gpt . wpe
self . bottom_gpt . wpe = functools . partial ( null_position_embeddings , dim = model_dim )
2021-12-28 16:00:53 +00:00
self . final_norm = nn . LayerNorm ( model_dim )
self . text_head = nn . Linear ( model_dim , self . number_text_tokens )
self . mel_head = nn . Linear ( model_dim , self . number_mel_codes )
self . max_conditioning_length = max_conditioning_length
# Initialize the embeddings per the GPT-2 scheme
for module in [ self . text_embedding , self . text_pos_solo_embedding , self . text_pos_paired_embedding ,
self . mel_pos_solo_embedding , self . mel_pos_paired_embedding ] :
2022-01-01 07:16:30 +00:00
module . weight . data . normal_ ( mean = 0.0 , std = self . bottom_gpt . config . initializer_range )
2021-12-28 16:00:53 +00:00
if module . padding_idx is not None :
module . weight . data [ module . padding_idx ] . zero_ ( )
def build_aligned_inputs_and_targets ( self , input , start_token , stop_token ) :
inp = F . pad ( input , ( 1 , 0 ) , value = start_token )
tar = F . pad ( input , ( 0 , 1 ) , value = stop_token )
return inp , tar
def set_mel_padding ( self , mel_input_tokens , wav_lengths ) :
"""
Given mel tokens that are derived from a padded audio clip and the actual lengths of each batch element in
that audio clip , reformats the tokens with STOP_MEL_TOKEN in place of the zero padding . This is required
preformatting to create a working TTS model .
"""
# Set padding areas within MEL (currently it is coded with the MEL code for <zero>).
mel_lengths = wav_lengths / / self . mel_length_compression
for b in range ( len ( mel_lengths ) ) :
actual_end = mel_lengths [ b ] + 1 # Due to the convolutional nature of how these tokens are generated, it would be best if the model predicts a token past the actual last token.
if actual_end < mel_input_tokens . shape [ - 1 ] :
mel_input_tokens [ b , actual_end : ] = self . stop_mel_token
return mel_input_tokens
def randomly_permute_conditioning_input ( self , speech_conditioning_input ) :
"""
Randomly permute the conditioning spectrogram , to destroy any structure present . Note that since the
conditioning input is derived from a discrete spectrogram , it does actually retain structure , but only a little
bit ( actually : exactly how much we want ; enough to discriminate different vocal qualities , but nothing about
what is being said ) .
"""
cond_input = speech_conditioning_input [ : , : , torch . randperm ( speech_conditioning_input . shape [ - 1 ] ) ]
if cond_input . shape [ - 1 ] > self . max_conditioning_length :
cond_input = cond_input [ : , : , : self . max_conditioning_length ]
return cond_input
2022-01-01 07:16:30 +00:00
def get_top_embeddings ( self , embedded_input ) :
true_embeddings = self . top_encoder ( embedded_input )
inputs = torch . cat ( [ self . top_gpt_start_embedding , true_embeddings [ : , : - 1 ] ] , dim = 1 )
top_pred = self . top_gpt ( inputs_embeds = inputs , return_dict = True )
return top_pred . last_hidden_state , true_embeddings
def inject_top_embeddings ( self , embedded_input , probability_of_true_top_embedding = .5 ) :
pred , true = self . get_top_embeddings ( embedded_input )
rand = torch . bernoulli ( torch . full ( ( 1 , embedded_input . shape [ 1 ] ) ,
fill_value = probability_of_true_top_embedding ) ) . to ( embedded_input . device )
mix = pred * rand + true * ( not rand )
embs = torch . chunk ( embedded_input , self . top_dim_reduction , dim = 1 )
assert len ( embs ) == mix . shape [ 1 ]
rejoin = [ ]
for i , emb in enumerate ( embs ) :
rejoin . append ( torch . cat ( [ mix [ i ] , emb ] ) , dim = 1 )
return torch . cat ( rejoin , dim = 1 )
2021-12-28 16:00:53 +00:00
def get_logits ( self , speech_conditioning_input , first_inputs , first_head , second_inputs = None , second_head = None , get_attns = False ) :
if second_inputs is not None :
emb = torch . cat ( [ speech_conditioning_input , first_inputs , second_inputs ] , dim = 1 )
else :
emb = torch . cat ( [ speech_conditioning_input , first_inputs ] , dim = 1 )
2022-01-01 07:16:30 +00:00
gpt_out = self . bottom_gpt ( inputs_embeds = emb , return_dict = True , output_attentions = get_attns )
2021-12-28 16:00:53 +00:00
if get_attns :
return gpt_out . attentions
enc = gpt_out . last_hidden_state [ : , 1 : ] # The first logit is tied to the speech_conditioning_input
enc = self . final_norm ( enc )
first_logits = enc [ : , : first_inputs . shape [ 1 ] ]
first_logits = first_head ( first_logits )
first_logits = first_logits . permute ( 0 , 2 , 1 )
if second_inputs is not None :
second_logits = enc [ : , - second_inputs . shape [ 1 ] : ]
second_logits = second_head ( second_logits )
second_logits = second_logits . permute ( 0 , 2 , 1 )
return first_logits , second_logits
else :
return first_logits
def forward ( self , speech_conditioning_input , text_inputs , mel_inputs , wav_lengths , text_first = True , return_attentions = False ) :
"""
Forward pass that uses both text and voice in either text conditioning mode or voice conditioning mode
( actuated by ` text_first ` ) .
speech_conditioning_input : MEL float tensor , ( b , 80 , s )
text_inputs : long tensor , ( b , t )
mel_inputs : long tensor , ( b , m )
wav_lengths : long tensor , ( b , )
"""
assert self . max_mel_tokens > = mel_inputs . shape [ 1 ] , f ' { mel_inputs . shape [ 1 ] } '
assert self . max_symbols_per_phrase > = text_inputs . shape [ 1 ] , f ' { text_inputs . shape [ 1 ] } '
assert self . max_total_tokens > = mel_inputs . shape [ 1 ] + text_inputs . shape [ 1 ] , f ' { mel_inputs . shape [ 1 ] } , { text_inputs . shape [ 1 ] } '
mel_inputs = self . set_mel_padding ( mel_inputs , wav_lengths )
speech_conditioning_input = self . randomly_permute_conditioning_input ( speech_conditioning_input )
speech_conditioning_input = self . conditioning_encoder ( speech_conditioning_input ) . unsqueeze ( 1 )
text_inputs , text_targets = self . build_aligned_inputs_and_targets ( text_inputs , self . start_text_token , self . stop_text_token )
text_emb = self . text_embedding ( text_inputs ) + self . text_pos_paired_embedding ( torch . arange ( text_inputs . shape [ 1 ] , device = text_inputs . device ) )
mel_inputs , mel_targets = self . build_aligned_inputs_and_targets ( mel_inputs , self . start_mel_token , self . stop_mel_token )
2022-01-01 07:16:30 +00:00
mel_emb = self . bottom_gpt . get_input_embeddings ( ) ( mel_inputs )
2021-12-28 16:00:53 +00:00
mel_emb = mel_emb + self . mel_pos_paired_embedding ( torch . arange ( mel_emb . shape [ 1 ] , device = mel_emb . device ) )
2022-01-01 07:16:30 +00:00
2021-12-28 16:00:53 +00:00
if text_first :
text_logits , mel_logits = self . get_logits ( speech_conditioning_input , text_emb , self . text_head , mel_emb , self . mel_head , get_attns = return_attentions )
else :
mel_logits , text_logits = self . get_logits ( speech_conditioning_input , mel_emb , self . mel_head , text_emb , self . text_head , get_attns = return_attentions )
if return_attentions :
return mel_logits
loss_text = F . cross_entropy ( text_logits , text_targets . long ( ) )
loss_mel = F . cross_entropy ( mel_logits , mel_targets . long ( ) )
return loss_text . mean ( ) , loss_mel . mean ( ) , mel_logits
def text_forward ( self , speech_conditioning_input , text_inputs ) :
"""
Performs autoregressive modeling on only text . Still requires a speech_conditioning_input due to the way the
model inputs are formatted . Just provide any audio clip ( arguably , zeros could be provided ) .
"""
assert self . max_symbols_per_phrase > = text_inputs . shape [ 1 ] , f ' { text_inputs . shape [ 1 ] } '
speech_conditioning_input = self . randomly_permute_conditioning_input ( speech_conditioning_input )
speech_conditioning_input = self . conditioning_encoder ( speech_conditioning_input ) . unsqueeze ( 1 )
text_inputs , text_targets = self . build_aligned_inputs_and_targets ( text_inputs , self . start_text_token , self . stop_text_token )
text_emb = self . text_embedding ( text_inputs ) + self . text_pos_solo_embedding ( torch . arange ( text_inputs . shape [ 1 ] , device = text_inputs . device ) )
text_logits = self . get_logits ( speech_conditioning_input , text_emb , self . text_head )
loss_text = F . cross_entropy ( text_logits , text_targets . long ( ) )
return loss_text . mean ( )
def speech_forward ( self , speech_conditioning_input , mel_inputs , wav_lengths ) :
"""
Performs autoregressive modeling on only speech data .
"""
assert self . max_mel_tokens > = mel_inputs . shape [ 1 ] , f ' { mel_inputs . shape [ 1 ] } '
mel_inputs = self . set_mel_padding ( mel_inputs , wav_lengths )
speech_conditioning_input = self . randomly_permute_conditioning_input ( speech_conditioning_input )
speech_conditioning_input = self . conditioning_encoder ( speech_conditioning_input ) . unsqueeze ( 1 )
mel_inputs , mel_targets = self . build_aligned_inputs_and_targets ( mel_inputs , self . start_mel_token , self . stop_mel_token )
2022-01-01 07:16:30 +00:00
mel_emb = self . bottom_gpt . get_input_embeddings ( ) ( mel_inputs )
2021-12-28 16:00:53 +00:00
mel_emb = mel_emb + self . mel_pos_solo_embedding ( torch . arange ( mel_emb . shape [ 1 ] , device = mel_emb . device ) )
mel_logits = self . get_logits ( speech_conditioning_input , mel_emb , self . mel_head )
loss_mel = F . cross_entropy ( mel_logits , mel_targets . long ( ) )
return loss_mel . mean ( )
def inference_speech ( self , speech_conditioning_input , text_inputs , * * hf_generate_kwargs ) :
if not hasattr ( self , ' inference_model ' ) :
2022-01-01 07:16:30 +00:00
self . inference_model = GPT2InferenceModel ( self . bottom_gpt_config , self . bottom_gpt , self . mel_pos_paired_embedding , self . final_norm , self . mel_head )
2021-12-28 16:00:53 +00:00
text_inputs , text_targets = self . build_aligned_inputs_and_targets ( text_inputs , self . start_text_token , self . stop_text_token )
text_emb = self . text_embedding ( text_inputs ) + self . text_pos_paired_embedding ( torch . arange ( text_inputs . shape [ 1 ] , device = text_inputs . device ) )
# Randomly permute the conditioning spectrogram, to destroy any structure present.
speech_conditioning_input = self . randomly_permute_conditioning_input ( speech_conditioning_input )
cond = self . conditioning_encoder ( speech_conditioning_input ) . unsqueeze ( 1 )
emb = torch . cat ( [ cond , text_emb ] , dim = 1 )
self . inference_model . store_mel_emb ( emb )
fake_inputs = torch . full ( ( emb . shape [ 0 ] , emb . shape [ 1 ] + 1 , ) , fill_value = 1 , dtype = torch . long , device = text_inputs . device )
fake_inputs [ : , - 1 ] = self . start_mel_token
gen = self . inference_model . generate ( fake_inputs , bos_token_id = self . start_mel_token , pad_token_id = self . stop_mel_token , eos_token_id = self . stop_mel_token ,
2022-01-01 07:16:30 +00:00
max_length = self . bottom_gpt_config . n_positions , * * hf_generate_kwargs )
2021-12-28 16:00:53 +00:00
return gen [ : , fake_inputs . shape [ 1 ] : ]
@register_model
2022-01-01 07:16:30 +00:00
def register_unified_gpt_voice_bilevel ( opt_net , opt ) :
2021-12-28 16:00:53 +00:00
return UnifiedGptVoice ( * * opt_get ( opt_net , [ ' kwargs ' ] , { } ) )
if __name__ == ' __main__ ' :
gpt = UnifiedGptVoice ( model_dim = 256 , heads = 4 )
l = gpt ( torch . randn ( 2 , 80 , 800 ) ,
torch . randint ( high = len ( symbols ) , size = ( 2 , 80 ) ) ,
torch . randint ( high = 8192 , size = ( 2 , 250 ) ) ,
torch . tensor ( [ 150 * 256 , 195 * 256 ] ) )