2019-08-23 13:42:47 +00:00
|
|
|
import torch
|
|
|
|
import torch.nn as nn
|
|
|
|
import torchvision
|
2020-07-25 23:16:54 +00:00
|
|
|
from models.archs.arch_util import ConvBnLelu, ConvGnLelu, ExpansionBlock, ConvGnSilu
|
2020-07-06 17:15:52 +00:00
|
|
|
import torch.nn.functional as F
|
2019-08-23 13:42:47 +00:00
|
|
|
|
|
|
|
|
|
|
|
class Discriminator_VGG_128(nn.Module):
|
2020-04-21 22:32:59 +00:00
|
|
|
# input_img_factor = multiplier to support images over 128x128. Only certain factors are supported.
|
2020-06-23 15:40:33 +00:00
|
|
|
def __init__(self, in_nc, nf, input_img_factor=1, extra_conv=False):
|
2019-08-23 13:42:47 +00:00
|
|
|
super(Discriminator_VGG_128, self).__init__()
|
|
|
|
# [64, 128, 128]
|
|
|
|
self.conv0_0 = nn.Conv2d(in_nc, nf, 3, 1, 1, bias=True)
|
|
|
|
self.conv0_1 = nn.Conv2d(nf, nf, 4, 2, 1, bias=False)
|
|
|
|
self.bn0_1 = nn.BatchNorm2d(nf, affine=True)
|
|
|
|
# [64, 64, 64]
|
2020-05-12 16:08:12 +00:00
|
|
|
self.conv1_0 = nn.Conv2d(nf, nf * 2, 3, 1, 1, bias=False)
|
2019-08-23 13:42:47 +00:00
|
|
|
self.bn1_0 = nn.BatchNorm2d(nf * 2, affine=True)
|
|
|
|
self.conv1_1 = nn.Conv2d(nf * 2, nf * 2, 4, 2, 1, bias=False)
|
|
|
|
self.bn1_1 = nn.BatchNorm2d(nf * 2, affine=True)
|
|
|
|
# [128, 32, 32]
|
2020-05-12 16:08:12 +00:00
|
|
|
self.conv2_0 = nn.Conv2d(nf * 2, nf * 4, 3, 1, 1, bias=False)
|
2019-08-23 13:42:47 +00:00
|
|
|
self.bn2_0 = nn.BatchNorm2d(nf * 4, affine=True)
|
|
|
|
self.conv2_1 = nn.Conv2d(nf * 4, nf * 4, 4, 2, 1, bias=False)
|
|
|
|
self.bn2_1 = nn.BatchNorm2d(nf * 4, affine=True)
|
|
|
|
# [256, 16, 16]
|
|
|
|
self.conv3_0 = nn.Conv2d(nf * 4, nf * 8, 3, 1, 1, bias=False)
|
|
|
|
self.bn3_0 = nn.BatchNorm2d(nf * 8, affine=True)
|
|
|
|
self.conv3_1 = nn.Conv2d(nf * 8, nf * 8, 4, 2, 1, bias=False)
|
|
|
|
self.bn3_1 = nn.BatchNorm2d(nf * 8, affine=True)
|
|
|
|
# [512, 8, 8]
|
|
|
|
self.conv4_0 = nn.Conv2d(nf * 8, nf * 8, 3, 1, 1, bias=False)
|
|
|
|
self.bn4_0 = nn.BatchNorm2d(nf * 8, affine=True)
|
|
|
|
self.conv4_1 = nn.Conv2d(nf * 8, nf * 8, 4, 2, 1, bias=False)
|
|
|
|
self.bn4_1 = nn.BatchNorm2d(nf * 8, affine=True)
|
2020-06-23 15:40:33 +00:00
|
|
|
final_nf = nf * 8
|
2019-08-23 13:42:47 +00:00
|
|
|
|
2020-06-23 15:40:33 +00:00
|
|
|
self.extra_conv = extra_conv
|
|
|
|
if self.extra_conv:
|
|
|
|
self.conv5_0 = nn.Conv2d(nf * 8, nf * 16, 3, 1, 1, bias=False)
|
|
|
|
self.bn5_0 = nn.BatchNorm2d(nf * 16, affine=True)
|
|
|
|
self.conv5_1 = nn.Conv2d(nf * 16, nf * 16, 4, 2, 1, bias=False)
|
|
|
|
self.bn5_1 = nn.BatchNorm2d(nf * 16, affine=True)
|
|
|
|
input_img_factor = input_img_factor // 2
|
|
|
|
final_nf = nf * 16
|
|
|
|
|
|
|
|
self.linear1 = nn.Linear(final_nf * 4 * input_img_factor * 4 * input_img_factor, 100)
|
2019-08-23 13:42:47 +00:00
|
|
|
self.linear2 = nn.Linear(100, 1)
|
|
|
|
|
|
|
|
# activation function
|
|
|
|
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
|
|
|
|
|
2020-04-30 17:45:07 +00:00
|
|
|
def forward(self, x):
|
2019-08-23 13:42:47 +00:00
|
|
|
fea = self.lrelu(self.conv0_0(x))
|
|
|
|
fea = self.lrelu(self.bn0_1(self.conv0_1(fea)))
|
|
|
|
|
2020-05-12 16:08:12 +00:00
|
|
|
#fea = torch.cat([fea, skip_med], dim=1)
|
2019-08-23 13:42:47 +00:00
|
|
|
fea = self.lrelu(self.bn1_0(self.conv1_0(fea)))
|
|
|
|
fea = self.lrelu(self.bn1_1(self.conv1_1(fea)))
|
|
|
|
|
2020-05-12 16:08:12 +00:00
|
|
|
#fea = torch.cat([fea, skip_lo], dim=1)
|
2019-08-23 13:42:47 +00:00
|
|
|
fea = self.lrelu(self.bn2_0(self.conv2_0(fea)))
|
|
|
|
fea = self.lrelu(self.bn2_1(self.conv2_1(fea)))
|
|
|
|
|
|
|
|
fea = self.lrelu(self.bn3_0(self.conv3_0(fea)))
|
|
|
|
fea = self.lrelu(self.bn3_1(self.conv3_1(fea)))
|
|
|
|
|
|
|
|
fea = self.lrelu(self.bn4_0(self.conv4_0(fea)))
|
|
|
|
fea = self.lrelu(self.bn4_1(self.conv4_1(fea)))
|
|
|
|
|
2020-06-23 15:40:33 +00:00
|
|
|
if self.extra_conv:
|
|
|
|
fea = self.lrelu(self.bn5_0(self.conv5_0(fea)))
|
|
|
|
fea = self.lrelu(self.bn5_1(self.conv5_1(fea)))
|
|
|
|
|
2020-06-16 20:27:16 +00:00
|
|
|
fea = fea.contiguous().view(fea.size(0), -1)
|
2019-08-23 13:42:47 +00:00
|
|
|
fea = self.lrelu(self.linear1(fea))
|
|
|
|
out = self.linear2(fea)
|
|
|
|
return out
|
|
|
|
|
2020-07-06 03:49:09 +00:00
|
|
|
|
2020-08-02 18:55:08 +00:00
|
|
|
class Discriminator_VGG_128_GN(nn.Module):
|
|
|
|
# input_img_factor = multiplier to support images over 128x128. Only certain factors are supported.
|
|
|
|
def __init__(self, in_nc, nf, input_img_factor=1):
|
|
|
|
super(Discriminator_VGG_128_GN, self).__init__()
|
|
|
|
# [64, 128, 128]
|
|
|
|
self.conv0_0 = nn.Conv2d(in_nc, nf, 3, 1, 1, bias=True)
|
|
|
|
self.conv0_1 = nn.Conv2d(nf, nf, 4, 2, 1, bias=False)
|
|
|
|
self.bn0_1 = nn.GroupNorm(8, nf, affine=True)
|
|
|
|
# [64, 64, 64]
|
|
|
|
self.conv1_0 = nn.Conv2d(nf, nf * 2, 3, 1, 1, bias=False)
|
|
|
|
self.bn1_0 = nn.GroupNorm(8, nf * 2, affine=True)
|
|
|
|
self.conv1_1 = nn.Conv2d(nf * 2, nf * 2, 4, 2, 1, bias=False)
|
|
|
|
self.bn1_1 = nn.GroupNorm(8, nf * 2, affine=True)
|
|
|
|
# [128, 32, 32]
|
|
|
|
self.conv2_0 = nn.Conv2d(nf * 2, nf * 4, 3, 1, 1, bias=False)
|
|
|
|
self.bn2_0 = nn.GroupNorm(8, nf * 4, affine=True)
|
|
|
|
self.conv2_1 = nn.Conv2d(nf * 4, nf * 4, 4, 2, 1, bias=False)
|
|
|
|
self.bn2_1 = nn.GroupNorm(8, nf * 4, affine=True)
|
|
|
|
# [256, 16, 16]
|
|
|
|
self.conv3_0 = nn.Conv2d(nf * 4, nf * 8, 3, 1, 1, bias=False)
|
|
|
|
self.bn3_0 = nn.GroupNorm(8, nf * 8, affine=True)
|
|
|
|
self.conv3_1 = nn.Conv2d(nf * 8, nf * 8, 4, 2, 1, bias=False)
|
|
|
|
self.bn3_1 = nn.GroupNorm(8, nf * 8, affine=True)
|
|
|
|
# [512, 8, 8]
|
|
|
|
self.conv4_0 = nn.Conv2d(nf * 8, nf * 8, 3, 1, 1, bias=False)
|
|
|
|
self.bn4_0 = nn.GroupNorm(8, nf * 8, affine=True)
|
|
|
|
self.conv4_1 = nn.Conv2d(nf * 8, nf * 8, 4, 2, 1, bias=False)
|
|
|
|
self.bn4_1 = nn.GroupNorm(8, nf * 8, affine=True)
|
|
|
|
final_nf = nf * 8
|
|
|
|
|
|
|
|
self.linear1 = nn.Linear(final_nf * 4 * input_img_factor * 4 * input_img_factor, 100)
|
|
|
|
self.linear2 = nn.Linear(100, 1)
|
|
|
|
|
|
|
|
# activation function
|
|
|
|
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
fea = self.lrelu(self.conv0_0(x))
|
|
|
|
fea = self.lrelu(self.bn0_1(self.conv0_1(fea)))
|
|
|
|
|
|
|
|
#fea = torch.cat([fea, skip_med], dim=1)
|
|
|
|
fea = self.lrelu(self.bn1_0(self.conv1_0(fea)))
|
|
|
|
fea = self.lrelu(self.bn1_1(self.conv1_1(fea)))
|
|
|
|
|
|
|
|
#fea = torch.cat([fea, skip_lo], dim=1)
|
|
|
|
fea = self.lrelu(self.bn2_0(self.conv2_0(fea)))
|
|
|
|
fea = self.lrelu(self.bn2_1(self.conv2_1(fea)))
|
|
|
|
|
|
|
|
fea = self.lrelu(self.bn3_0(self.conv3_0(fea)))
|
|
|
|
fea = self.lrelu(self.bn3_1(self.conv3_1(fea)))
|
|
|
|
|
|
|
|
fea = self.lrelu(self.bn4_0(self.conv4_0(fea)))
|
|
|
|
fea = self.lrelu(self.bn4_1(self.conv4_1(fea)))
|
|
|
|
|
|
|
|
fea = fea.contiguous().view(fea.size(0), -1)
|
|
|
|
fea = self.lrelu(self.linear1(fea))
|
|
|
|
out = self.linear2(fea)
|
|
|
|
return out
|
|
|
|
|
2020-07-06 03:49:09 +00:00
|
|
|
class Discriminator_VGG_PixLoss(nn.Module):
|
|
|
|
def __init__(self, in_nc, nf):
|
|
|
|
super(Discriminator_VGG_PixLoss, self).__init__()
|
|
|
|
# [64, 128, 128]
|
|
|
|
self.conv0_0 = nn.Conv2d(in_nc, nf, 3, 1, 1, bias=True)
|
|
|
|
self.conv0_1 = nn.Conv2d(nf, nf, 4, 2, 1, bias=False)
|
2020-07-07 02:59:59 +00:00
|
|
|
self.bn0_1 = nn.GroupNorm(8, nf, affine=True)
|
2020-07-06 03:49:09 +00:00
|
|
|
# [64, 64, 64]
|
|
|
|
self.conv1_0 = nn.Conv2d(nf, nf * 2, 3, 1, 1, bias=False)
|
2020-07-07 02:59:59 +00:00
|
|
|
self.bn1_0 = nn.GroupNorm(8, nf * 2, affine=True)
|
2020-07-06 03:49:09 +00:00
|
|
|
self.conv1_1 = nn.Conv2d(nf * 2, nf * 2, 4, 2, 1, bias=False)
|
2020-07-07 02:59:59 +00:00
|
|
|
self.bn1_1 = nn.GroupNorm(8, nf * 2, affine=True)
|
2020-07-06 03:49:09 +00:00
|
|
|
# [128, 32, 32]
|
|
|
|
self.conv2_0 = nn.Conv2d(nf * 2, nf * 4, 3, 1, 1, bias=False)
|
2020-07-07 02:59:59 +00:00
|
|
|
self.bn2_0 = nn.GroupNorm(8, nf * 4, affine=True)
|
2020-07-06 03:49:09 +00:00
|
|
|
self.conv2_1 = nn.Conv2d(nf * 4, nf * 4, 4, 2, 1, bias=False)
|
2020-07-07 02:59:59 +00:00
|
|
|
self.bn2_1 = nn.GroupNorm(8, nf * 4, affine=True)
|
2020-07-06 03:49:09 +00:00
|
|
|
# [256, 16, 16]
|
|
|
|
self.conv3_0 = nn.Conv2d(nf * 4, nf * 8, 3, 1, 1, bias=False)
|
2020-07-07 02:59:59 +00:00
|
|
|
self.bn3_0 = nn.GroupNorm(8, nf * 8, affine=True)
|
2020-07-06 03:49:09 +00:00
|
|
|
self.conv3_1 = nn.Conv2d(nf * 8, nf * 8, 4, 2, 1, bias=False)
|
2020-07-07 02:59:59 +00:00
|
|
|
self.bn3_1 = nn.GroupNorm(8, nf * 8, affine=True)
|
2020-07-06 03:49:09 +00:00
|
|
|
# [512, 8, 8]
|
|
|
|
self.conv4_0 = nn.Conv2d(nf * 8, nf * 8, 3, 1, 1, bias=False)
|
2020-07-07 02:59:59 +00:00
|
|
|
self.bn4_0 = nn.GroupNorm(8, nf * 8, affine=True)
|
2020-07-06 03:49:09 +00:00
|
|
|
self.conv4_1 = nn.Conv2d(nf * 8, nf * 8, 4, 2, 1, bias=False)
|
2020-07-07 02:59:59 +00:00
|
|
|
self.bn4_1 = nn.GroupNorm(8, nf * 8, affine=True)
|
2020-07-06 03:49:09 +00:00
|
|
|
|
2020-07-07 02:59:59 +00:00
|
|
|
self.reduce_1 = ConvGnLelu(nf * 8, nf * 4, bias=False)
|
2020-07-10 21:53:41 +00:00
|
|
|
self.pix_loss_collapse = ConvGnLelu(nf * 4, 1, bias=False, norm=False, activation=False)
|
2020-07-06 03:49:09 +00:00
|
|
|
|
2020-07-06 17:15:52 +00:00
|
|
|
# Pyramid network: upsample with residuals and produce losses at multiple resolutions.
|
2020-07-10 21:53:41 +00:00
|
|
|
self.up3_decimate = ConvGnLelu(nf * 8, nf * 8, kernel_size=3, bias=True, activation=False)
|
2020-07-07 02:59:59 +00:00
|
|
|
self.up3_converge = ConvGnLelu(nf * 16, nf * 8, kernel_size=3, bias=False)
|
|
|
|
self.up3_proc = ConvGnLelu(nf * 8, nf * 8, bias=False)
|
|
|
|
self.up3_reduce = ConvGnLelu(nf * 8, nf * 4, bias=False)
|
2020-07-10 21:53:41 +00:00
|
|
|
self.up3_pix = ConvGnLelu(nf * 4, 1, bias=False, norm=False, activation=False)
|
2020-07-07 02:59:59 +00:00
|
|
|
|
2020-07-10 21:53:41 +00:00
|
|
|
self.up2_decimate = ConvGnLelu(nf * 8, nf * 4, kernel_size=1, bias=True, activation=False)
|
2020-07-07 02:59:59 +00:00
|
|
|
self.up2_converge = ConvGnLelu(nf * 8, nf * 4, kernel_size=3, bias=False)
|
|
|
|
self.up2_proc = ConvGnLelu(nf * 4, nf * 4, bias=False)
|
|
|
|
self.up2_reduce = ConvGnLelu(nf * 4, nf * 2, bias=False)
|
2020-07-10 21:53:41 +00:00
|
|
|
self.up2_pix = ConvGnLelu(nf * 2, 1, bias=False, norm=False, activation=False)
|
2020-07-06 17:15:52 +00:00
|
|
|
|
2020-07-06 03:49:09 +00:00
|
|
|
# activation function
|
|
|
|
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
|
|
|
|
|
2020-07-08 23:40:26 +00:00
|
|
|
def forward(self, x, flatten=True):
|
2020-07-06 17:15:52 +00:00
|
|
|
fea0 = self.lrelu(self.conv0_0(x))
|
|
|
|
fea0 = self.lrelu(self.bn0_1(self.conv0_1(fea0)))
|
2020-07-06 03:49:09 +00:00
|
|
|
|
2020-07-06 17:15:52 +00:00
|
|
|
fea1 = self.lrelu(self.bn1_0(self.conv1_0(fea0)))
|
|
|
|
fea1 = self.lrelu(self.bn1_1(self.conv1_1(fea1)))
|
2020-07-06 03:49:09 +00:00
|
|
|
|
2020-07-06 17:15:52 +00:00
|
|
|
fea2 = self.lrelu(self.bn2_0(self.conv2_0(fea1)))
|
|
|
|
fea2 = self.lrelu(self.bn2_1(self.conv2_1(fea2)))
|
2020-07-06 03:49:09 +00:00
|
|
|
|
2020-07-06 17:15:52 +00:00
|
|
|
fea3 = self.lrelu(self.bn3_0(self.conv3_0(fea2)))
|
|
|
|
fea3 = self.lrelu(self.bn3_1(self.conv3_1(fea3)))
|
2020-07-06 03:49:09 +00:00
|
|
|
|
2020-07-06 17:15:52 +00:00
|
|
|
fea4 = self.lrelu(self.bn4_0(self.conv4_0(fea3)))
|
|
|
|
fea4 = self.lrelu(self.bn4_1(self.conv4_1(fea4)))
|
2020-07-06 03:49:09 +00:00
|
|
|
|
2020-07-06 17:15:52 +00:00
|
|
|
loss = self.reduce_1(fea4)
|
2020-07-08 23:40:26 +00:00
|
|
|
# "Weight" all losses the same by interpolating them to the highest dimension.
|
|
|
|
loss = self.pix_loss_collapse(loss)
|
|
|
|
loss = F.interpolate(loss, scale_factor=4, mode="nearest")
|
2020-07-06 17:15:52 +00:00
|
|
|
|
|
|
|
# And the pyramid network!
|
|
|
|
dec3 = self.up3_decimate(F.interpolate(fea4, scale_factor=2, mode="nearest"))
|
|
|
|
dec3 = torch.cat([dec3, fea3], dim=1)
|
|
|
|
dec3 = self.up3_converge(dec3)
|
|
|
|
dec3 = self.up3_proc(dec3)
|
|
|
|
loss3 = self.up3_reduce(dec3)
|
2020-07-08 23:40:26 +00:00
|
|
|
loss3 = self.up3_pix(loss3)
|
|
|
|
loss3 = F.interpolate(loss3, scale_factor=2, mode="nearest")
|
2020-07-06 17:15:52 +00:00
|
|
|
|
|
|
|
dec2 = self.up2_decimate(F.interpolate(dec3, scale_factor=2, mode="nearest"))
|
|
|
|
dec2 = torch.cat([dec2, fea2], dim=1)
|
|
|
|
dec2 = self.up2_converge(dec2)
|
|
|
|
dec2 = self.up2_proc(dec2)
|
2020-07-09 03:27:48 +00:00
|
|
|
dec2 = self.up2_reduce(dec2)
|
|
|
|
loss2 = self.up2_pix(dec2)
|
2020-07-06 17:15:52 +00:00
|
|
|
|
2020-07-08 23:40:26 +00:00
|
|
|
# Compress all of the loss values into the batch dimension. The actual loss attached to this output will
|
|
|
|
# then know how to handle them.
|
|
|
|
combined_losses = torch.cat([loss, loss3, loss2], dim=1)
|
2020-07-06 17:15:52 +00:00
|
|
|
return combined_losses.view(-1, 1)
|
2020-07-06 03:49:09 +00:00
|
|
|
|
2020-07-10 22:16:03 +00:00
|
|
|
def pixgan_parameters(self):
|
|
|
|
return 3, 8
|
|
|
|
|
|
|
|
|
|
|
|
class Discriminator_UNet(nn.Module):
|
|
|
|
def __init__(self, in_nc, nf):
|
2020-07-11 04:50:56 +00:00
|
|
|
super(Discriminator_UNet, self).__init__()
|
2020-07-10 22:16:03 +00:00
|
|
|
# [64, 128, 128]
|
2020-07-11 04:52:02 +00:00
|
|
|
self.conv0_0 = ConvGnLelu(in_nc, nf, kernel_size=3, bias=True, activation=False)
|
2020-07-10 22:16:03 +00:00
|
|
|
self.conv0_1 = ConvGnLelu(nf, nf, kernel_size=3, stride=2, bias=False)
|
|
|
|
# [64, 64, 64]
|
|
|
|
self.conv1_0 = ConvGnLelu(nf, nf * 2, kernel_size=3, bias=False)
|
|
|
|
self.conv1_1 = ConvGnLelu(nf * 2, nf * 2, kernel_size=3, stride=2, bias=False)
|
|
|
|
# [128, 32, 32]
|
|
|
|
self.conv2_0 = ConvGnLelu(nf * 2, nf * 4, kernel_size=3, bias=False)
|
|
|
|
self.conv2_1 = ConvGnLelu(nf * 4, nf * 4, kernel_size=3, stride=2, bias=False)
|
|
|
|
# [256, 16, 16]
|
|
|
|
self.conv3_0 = ConvGnLelu(nf * 4, nf * 8, kernel_size=3, bias=False)
|
|
|
|
self.conv3_1 = ConvGnLelu(nf * 8, nf * 8, kernel_size=3, stride=2, bias=False)
|
|
|
|
# [512, 8, 8]
|
|
|
|
self.conv4_0 = ConvGnLelu(nf * 8, nf * 8, kernel_size=3, bias=False)
|
|
|
|
self.conv4_1 = ConvGnLelu(nf * 8, nf * 8, kernel_size=3, stride=2, bias=False)
|
|
|
|
|
2020-07-11 04:57:34 +00:00
|
|
|
self.up1 = ExpansionBlock(nf * 8, nf * 8, block=ConvGnLelu)
|
|
|
|
self.proc1 = ConvGnLelu(nf * 8, nf * 8, bias=False)
|
|
|
|
self.collapse1 = ConvGnLelu(nf * 8, 1, bias=True, norm=False, activation=False)
|
2020-07-10 22:16:03 +00:00
|
|
|
|
2020-07-11 04:57:34 +00:00
|
|
|
self.up2 = ExpansionBlock(nf * 8, nf * 4, block=ConvGnLelu)
|
|
|
|
self.proc2 = ConvGnLelu(nf * 4, nf * 4, bias=False)
|
|
|
|
self.collapse2 = ConvGnLelu(nf * 4, 1, bias=True, norm=False, activation=False)
|
2020-07-10 22:16:03 +00:00
|
|
|
|
2020-07-11 04:57:34 +00:00
|
|
|
self.up3 = ExpansionBlock(nf * 4, nf * 2, block=ConvGnLelu)
|
|
|
|
self.proc3 = ConvGnLelu(nf * 2, nf * 2, bias=False)
|
|
|
|
self.collapse3 = ConvGnLelu(nf * 2, 1, bias=True, norm=False, activation=False)
|
2020-07-10 22:16:03 +00:00
|
|
|
|
|
|
|
def forward(self, x, flatten=True):
|
|
|
|
fea0 = self.conv0_0(x)
|
|
|
|
fea0 = self.conv0_1(fea0)
|
|
|
|
|
|
|
|
fea1 = self.conv1_0(fea0)
|
|
|
|
fea1 = self.conv1_1(fea1)
|
|
|
|
|
|
|
|
fea2 = self.conv2_0(fea1)
|
|
|
|
fea2 = self.conv2_1(fea2)
|
|
|
|
|
|
|
|
fea3 = self.conv3_0(fea2)
|
|
|
|
fea3 = self.conv3_1(fea3)
|
|
|
|
|
|
|
|
fea4 = self.conv4_0(fea3)
|
|
|
|
fea4 = self.conv4_1(fea4)
|
|
|
|
|
|
|
|
# And the pyramid network!
|
|
|
|
u1 = self.up1(fea4, fea3)
|
|
|
|
loss1 = self.collapse1(self.proc1(u1))
|
|
|
|
u2 = self.up2(u1, fea2)
|
|
|
|
loss2 = self.collapse2(self.proc2(u2))
|
|
|
|
u3 = self.up3(u2, fea1)
|
|
|
|
loss3 = self.collapse3(self.proc3(u3))
|
|
|
|
res = loss3.shape[2:]
|
|
|
|
|
|
|
|
# Compress all of the loss values into the batch dimension. The actual loss attached to this output will
|
|
|
|
# then know how to handle them.
|
|
|
|
combined_losses = torch.cat([F.interpolate(loss1, scale_factor=4),
|
|
|
|
F.interpolate(loss2, scale_factor=2),
|
|
|
|
F.interpolate(loss3, scale_factor=1)], dim=1)
|
|
|
|
return combined_losses.view(-1, 1)
|
|
|
|
|
|
|
|
def pixgan_parameters(self):
|
|
|
|
return 3, 4
|
|
|
|
|
2020-07-16 16:10:09 +00:00
|
|
|
|
2020-07-23 02:52:59 +00:00
|
|
|
import functools
|
|
|
|
from models.archs.SwitchedResidualGenerator_arch import MultiConvBlock, ConfigurableSwitchComputer, BareConvSwitch
|
|
|
|
from switched_conv_util import save_attention_to_image
|
|
|
|
from switched_conv import compute_attention_specificity, AttentionNorm
|
|
|
|
|
|
|
|
|
2020-07-25 23:16:54 +00:00
|
|
|
class ReducingMultiplexer(nn.Module):
|
|
|
|
def __init__(self, nf, num_channels):
|
|
|
|
super(ReducingMultiplexer, self).__init__()
|
|
|
|
self.conv1_0 = ConvGnSilu(nf, nf * 2, kernel_size=3, bias=False)
|
|
|
|
self.conv1_1 = ConvGnSilu(nf * 2, nf * 2, kernel_size=3, stride=2, bias=False)
|
|
|
|
# [128, 32, 32]
|
|
|
|
self.conv2_0 = ConvGnSilu(nf * 2, nf * 4, kernel_size=3, bias=False)
|
|
|
|
self.conv2_1 = ConvGnSilu(nf * 4, nf * 4, kernel_size=3, stride=2, bias=False)
|
|
|
|
# [256, 16, 16]
|
|
|
|
self.conv3_0 = ConvGnSilu(nf * 4, nf * 8, kernel_size=3, bias=False)
|
|
|
|
self.conv3_1 = ConvGnSilu(nf * 8, nf * 8, kernel_size=3, stride=2, bias=False)
|
|
|
|
self.exp1 = ExpansionBlock(nf * 8, nf * 4)
|
|
|
|
self.exp2 = ExpansionBlock(nf * 4, nf * 2)
|
|
|
|
self.exp3 = ExpansionBlock(nf * 2, nf)
|
|
|
|
self.collapse = ConvGnSilu(nf, num_channels, norm=False, bias=True)
|
2020-07-23 02:52:59 +00:00
|
|
|
|
2020-07-25 23:16:54 +00:00
|
|
|
def forward(self, x):
|
|
|
|
fea1 = self.conv1_0(x)
|
|
|
|
fea1 = self.conv1_1(fea1)
|
|
|
|
fea2 = self.conv2_0(fea1)
|
|
|
|
fea2 = self.conv2_1(fea2)
|
|
|
|
fea3 = self.conv3_0(fea2)
|
|
|
|
fea3 = self.conv3_1(fea3)
|
|
|
|
up = self.exp1(fea3, fea2)
|
|
|
|
up = self.exp2(up, fea1)
|
|
|
|
up = self.exp3(up, x)
|
|
|
|
return self.collapse(up)
|
2020-07-23 02:52:59 +00:00
|
|
|
|
|
|
|
|
|
|
|
# Differs from ConfigurableSwitchComputer in that the connections are not residual and the multiplexer is fed directly in.
|
|
|
|
class ConfigurableLinearSwitchComputer(nn.Module):
|
|
|
|
def __init__(self, out_filters, multiplexer_net, pre_transform_block, transform_block, transform_count, attention_norm,
|
|
|
|
init_temp=20, add_scalable_noise_to_transforms=False):
|
|
|
|
super(ConfigurableLinearSwitchComputer, self).__init__()
|
|
|
|
|
|
|
|
self.multiplexer = multiplexer_net
|
|
|
|
self.pre_transform = pre_transform_block
|
|
|
|
self.transforms = nn.ModuleList([transform_block() for _ in range(transform_count)])
|
|
|
|
self.add_noise = add_scalable_noise_to_transforms
|
|
|
|
self.noise_scale = nn.Parameter(torch.full((1,), float(1e-3)))
|
|
|
|
|
|
|
|
# And the switch itself, including learned scalars
|
|
|
|
self.switch = BareConvSwitch(initial_temperature=init_temp, attention_norm=AttentionNorm(transform_count, accumulator_size=16 * transform_count) if attention_norm else None)
|
|
|
|
self.post_switch_conv = ConvBnLelu(out_filters, out_filters, norm=False, bias=True)
|
|
|
|
# The post_switch_conv gets a low scale initially. The network can decide to magnify it (or not)
|
|
|
|
# depending on its needs.
|
|
|
|
self.psc_scale = nn.Parameter(torch.full((1,), float(.1)))
|
|
|
|
|
2020-07-25 23:16:54 +00:00
|
|
|
def forward(self, x, output_attention_weights=False, extra_arg=None):
|
2020-07-23 02:52:59 +00:00
|
|
|
if self.add_noise:
|
|
|
|
rand_feature = torch.randn_like(x) * self.noise_scale
|
|
|
|
x = x + rand_feature
|
|
|
|
|
2020-07-25 23:16:54 +00:00
|
|
|
if self.pre_transform:
|
|
|
|
x = self.pre_transform(x)
|
|
|
|
xformed = [t.forward(x) for t in self.transforms]
|
|
|
|
m = self.multiplexer(x)
|
2020-07-23 02:52:59 +00:00
|
|
|
|
|
|
|
outputs, attention = self.switch(xformed, m, True)
|
|
|
|
outputs = self.post_switch_conv(outputs)
|
|
|
|
if output_attention_weights:
|
|
|
|
return outputs, attention
|
|
|
|
else:
|
|
|
|
return outputs
|
|
|
|
|
|
|
|
def set_temperature(self, temp):
|
|
|
|
self.switch.set_attention_temperature(temp)
|
|
|
|
|
|
|
|
|
2020-07-25 23:16:54 +00:00
|
|
|
def create_switched_downsampler(nf, nf_out, num_channels, initial_temp=10):
|
|
|
|
multiplx = ReducingMultiplexer(nf, num_channels)
|
|
|
|
pretransform = None
|
|
|
|
transform_fn = functools.partial(MultiConvBlock, nf, nf, nf_out, kernel_size=3, depth=2)
|
2020-07-23 02:52:59 +00:00
|
|
|
return ConfigurableLinearSwitchComputer(nf_out, multiplx,
|
|
|
|
pre_transform_block=pretransform, transform_block=transform_fn,
|
|
|
|
attention_norm=True,
|
|
|
|
transform_count=num_channels, init_temp=initial_temp,
|
|
|
|
add_scalable_noise_to_transforms=False)
|
|
|
|
|
|
|
|
|
|
|
|
class Discriminator_switched(nn.Module):
|
|
|
|
def __init__(self, in_nc, nf, initial_temp=10, final_temperature_step=50000):
|
|
|
|
super(Discriminator_switched, self).__init__()
|
|
|
|
# [64, 128, 128]
|
|
|
|
self.conv0_0 = ConvGnLelu(in_nc, nf, kernel_size=3, bias=True, activation=False)
|
|
|
|
self.conv0_1 = ConvGnLelu(nf, nf, kernel_size=3, stride=2, bias=False)
|
|
|
|
# [64, 64, 64]
|
2020-07-25 23:16:54 +00:00
|
|
|
self.sw = create_switched_downsampler(nf, nf, 8)
|
|
|
|
self.switches = [self.sw]
|
|
|
|
self.conv1_1 = ConvGnLelu(nf, nf * 2, kernel_size=3, stride=2, bias=False)
|
2020-07-23 02:52:59 +00:00
|
|
|
# [128, 32, 32]
|
|
|
|
self.conv2_0 = ConvGnLelu(nf * 2, nf * 4, kernel_size=3, bias=False)
|
|
|
|
self.conv2_1 = ConvGnLelu(nf * 4, nf * 4, kernel_size=3, stride=2, bias=False)
|
|
|
|
# [256, 16, 16]
|
|
|
|
self.conv3_0 = ConvGnLelu(nf * 4, nf * 8, kernel_size=3, bias=False)
|
|
|
|
self.conv3_1 = ConvGnLelu(nf * 8, nf * 8, kernel_size=3, stride=2, bias=False)
|
|
|
|
# [512, 8, 8]
|
|
|
|
self.conv4_0 = ConvGnLelu(nf * 8, nf * 8, kernel_size=3, bias=False)
|
|
|
|
self.conv4_1 = ConvGnLelu(nf * 8, nf * 8, kernel_size=3, stride=2, bias=False)
|
|
|
|
|
|
|
|
self.exp1 = ExpansionBlock(nf * 8, nf * 8, block=ConvGnLelu)
|
2020-07-25 23:16:54 +00:00
|
|
|
self.exp2 = ExpansionBlock(nf * 8, nf * 4, block=ConvGnLelu)
|
|
|
|
self.exp3 = ExpansionBlock(nf * 4, nf * 2, block=ConvGnLelu)
|
2020-07-23 02:52:59 +00:00
|
|
|
self.proc3 = ConvGnLelu(nf * 2, nf * 2, bias=False)
|
|
|
|
self.collapse3 = ConvGnLelu(nf * 2, 1, bias=True, norm=False, activation=False)
|
|
|
|
|
|
|
|
self.init_temperature = initial_temp
|
|
|
|
self.final_temperature_step = final_temperature_step
|
|
|
|
self.attentions = None
|
|
|
|
|
|
|
|
def forward(self, x, flatten=True):
|
|
|
|
fea0 = self.conv0_0(x)
|
|
|
|
fea0 = self.conv0_1(fea0)
|
|
|
|
|
2020-07-25 23:16:54 +00:00
|
|
|
fea1, att = self.sw(fea0, True)
|
|
|
|
self.attentions = [att]
|
2020-07-23 02:52:59 +00:00
|
|
|
fea1 = self.conv1_1(fea1)
|
|
|
|
|
|
|
|
fea2 = self.conv2_0(fea1)
|
|
|
|
fea2 = self.conv2_1(fea2)
|
|
|
|
|
|
|
|
fea3 = self.conv3_0(fea2)
|
|
|
|
fea3 = self.conv3_1(fea3)
|
|
|
|
|
|
|
|
fea4 = self.conv4_0(fea3)
|
|
|
|
fea4 = self.conv4_1(fea4)
|
|
|
|
|
|
|
|
u1 = self.exp1(fea4, fea3)
|
2020-07-25 23:16:54 +00:00
|
|
|
u2 = self.exp2(u1, fea2)
|
|
|
|
u3 = self.exp3(u2, fea1)
|
|
|
|
|
2020-07-23 02:52:59 +00:00
|
|
|
loss3 = self.collapse3(self.proc3(u3))
|
|
|
|
return loss3.view(-1, 1)
|
|
|
|
|
|
|
|
def pixgan_parameters(self):
|
|
|
|
return 1, 4
|
|
|
|
|
|
|
|
def set_temperature(self, temp):
|
|
|
|
[sw.set_temperature(temp) for sw in self.switches]
|
|
|
|
|
|
|
|
def update_for_step(self, step, experiments_path='.'):
|
|
|
|
if self.attentions:
|
|
|
|
for i, sw in enumerate(self.switches):
|
|
|
|
temp_loss_per_step = (self.init_temperature - 1) / self.final_temperature_step
|
|
|
|
sw.set_temperature(min(self.init_temperature,
|
|
|
|
max(self.init_temperature - temp_loss_per_step * step, 1)))
|
|
|
|
if step % 50 == 0:
|
|
|
|
[save_attention_to_image(experiments_path, self.attentions[i], 8, step, "disc_a%i" % (i+1,), l_mult=10) for i in range(len(self.attentions))]
|
|
|
|
|
|
|
|
def get_debug_values(self, step):
|
|
|
|
temp = self.switches[0].switch.temperature
|
|
|
|
mean_hists = [compute_attention_specificity(att, 2) for att in self.attentions]
|
|
|
|
means = [i[0] for i in mean_hists]
|
|
|
|
hists = [i[1].clone().detach().cpu().flatten() for i in mean_hists]
|
|
|
|
val = {"disc_switch_temperature": temp}
|
|
|
|
for i in range(len(means)):
|
|
|
|
val["disc_switch_%i_specificity" % (i,)] = means[i]
|
|
|
|
val["disc_switch_%i_histogram" % (i,)] = hists[i]
|
|
|
|
return val
|
|
|
|
|
|
|
|
|
2020-07-16 16:10:09 +00:00
|
|
|
class Discriminator_UNet_FeaOut(nn.Module):
|
2020-07-20 01:05:08 +00:00
|
|
|
def __init__(self, in_nc, nf, feature_mode=False):
|
2020-07-16 16:10:09 +00:00
|
|
|
super(Discriminator_UNet_FeaOut, self).__init__()
|
|
|
|
# [64, 128, 128]
|
|
|
|
self.conv0_0 = ConvGnLelu(in_nc, nf, kernel_size=3, bias=True, activation=False)
|
|
|
|
self.conv0_1 = ConvGnLelu(nf, nf, kernel_size=3, stride=2, bias=False)
|
|
|
|
# [64, 64, 64]
|
|
|
|
self.conv1_0 = ConvGnLelu(nf, nf * 2, kernel_size=3, bias=False)
|
|
|
|
self.conv1_1 = ConvGnLelu(nf * 2, nf * 2, kernel_size=3, stride=2, bias=False)
|
|
|
|
# [128, 32, 32]
|
|
|
|
self.conv2_0 = ConvGnLelu(nf * 2, nf * 4, kernel_size=3, bias=False)
|
|
|
|
self.conv2_1 = ConvGnLelu(nf * 4, nf * 4, kernel_size=3, stride=2, bias=False)
|
|
|
|
# [256, 16, 16]
|
|
|
|
self.conv3_0 = ConvGnLelu(nf * 4, nf * 8, kernel_size=3, bias=False)
|
|
|
|
self.conv3_1 = ConvGnLelu(nf * 8, nf * 8, kernel_size=3, stride=2, bias=False)
|
|
|
|
# [512, 8, 8]
|
|
|
|
self.conv4_0 = ConvGnLelu(nf * 8, nf * 8, kernel_size=3, bias=False)
|
|
|
|
self.conv4_1 = ConvGnLelu(nf * 8, nf * 8, kernel_size=3, stride=2, bias=False)
|
|
|
|
|
|
|
|
self.up1 = ExpansionBlock(nf * 8, nf * 8, block=ConvGnLelu)
|
|
|
|
self.proc1 = ConvGnLelu(nf * 8, nf * 8, bias=False)
|
2020-07-21 02:54:45 +00:00
|
|
|
self.fea_proc = ConvGnLelu(nf * 8, nf * 8, bias=True, norm=False, activation=False)
|
2020-07-16 16:10:09 +00:00
|
|
|
self.collapse1 = ConvGnLelu(nf * 8, 1, bias=True, norm=False, activation=False)
|
|
|
|
|
2020-07-20 01:05:08 +00:00
|
|
|
self.feature_mode = feature_mode
|
|
|
|
|
2020-07-16 16:10:09 +00:00
|
|
|
def forward(self, x, output_feature_vector=False):
|
|
|
|
fea0 = self.conv0_0(x)
|
|
|
|
fea0 = self.conv0_1(fea0)
|
|
|
|
|
|
|
|
fea1 = self.conv1_0(fea0)
|
|
|
|
fea1 = self.conv1_1(fea1)
|
|
|
|
|
|
|
|
fea2 = self.conv2_0(fea1)
|
|
|
|
fea2 = self.conv2_1(fea2)
|
|
|
|
|
|
|
|
fea3 = self.conv3_0(fea2)
|
|
|
|
fea3 = self.conv3_1(fea3)
|
|
|
|
|
2020-07-21 02:54:45 +00:00
|
|
|
fea4 = self.conv4_0(fea3)
|
|
|
|
fea4 = self.conv4_1(fea4)
|
2020-07-16 16:10:09 +00:00
|
|
|
|
|
|
|
# And the pyramid network!
|
|
|
|
u1 = self.up1(fea4, fea3)
|
|
|
|
loss1 = self.collapse1(self.proc1(u1))
|
2020-07-21 02:54:45 +00:00
|
|
|
fea_out = self.fea_proc(u1)
|
2020-07-16 16:10:09 +00:00
|
|
|
|
2020-07-21 02:54:45 +00:00
|
|
|
combined_losses = F.interpolate(loss1, scale_factor=4)
|
2020-07-16 16:10:09 +00:00
|
|
|
if output_feature_vector:
|
2020-07-21 02:54:45 +00:00
|
|
|
return combined_losses.view(-1, 1), fea_out
|
2020-07-16 16:10:09 +00:00
|
|
|
else:
|
|
|
|
return combined_losses.view(-1, 1)
|
|
|
|
|
|
|
|
def pixgan_parameters(self):
|
2020-07-21 02:54:45 +00:00
|
|
|
return 1, 4
|