DL-Art-School/codes/models/archs/discriminator_vgg_arch.py

521 lines
23 KiB
Python
Raw Normal View History

2019-08-23 13:42:47 +00:00
import torch
import torch.nn as nn
import torchvision
2020-07-25 23:16:54 +00:00
from models.archs.arch_util import ConvBnLelu, ConvGnLelu, ExpansionBlock, ConvGnSilu
import torch.nn.functional as F
2019-08-23 13:42:47 +00:00
class Discriminator_VGG_128(nn.Module):
2020-04-21 22:32:59 +00:00
# input_img_factor = multiplier to support images over 128x128. Only certain factors are supported.
def __init__(self, in_nc, nf, input_img_factor=1, extra_conv=False):
2019-08-23 13:42:47 +00:00
super(Discriminator_VGG_128, self).__init__()
# [64, 128, 128]
self.conv0_0 = nn.Conv2d(in_nc, nf, 3, 1, 1, bias=True)
self.conv0_1 = nn.Conv2d(nf, nf, 4, 2, 1, bias=False)
self.bn0_1 = nn.BatchNorm2d(nf, affine=True)
# [64, 64, 64]
2020-05-12 16:08:12 +00:00
self.conv1_0 = nn.Conv2d(nf, nf * 2, 3, 1, 1, bias=False)
2019-08-23 13:42:47 +00:00
self.bn1_0 = nn.BatchNorm2d(nf * 2, affine=True)
self.conv1_1 = nn.Conv2d(nf * 2, nf * 2, 4, 2, 1, bias=False)
self.bn1_1 = nn.BatchNorm2d(nf * 2, affine=True)
# [128, 32, 32]
2020-05-12 16:08:12 +00:00
self.conv2_0 = nn.Conv2d(nf * 2, nf * 4, 3, 1, 1, bias=False)
2019-08-23 13:42:47 +00:00
self.bn2_0 = nn.BatchNorm2d(nf * 4, affine=True)
self.conv2_1 = nn.Conv2d(nf * 4, nf * 4, 4, 2, 1, bias=False)
self.bn2_1 = nn.BatchNorm2d(nf * 4, affine=True)
# [256, 16, 16]
self.conv3_0 = nn.Conv2d(nf * 4, nf * 8, 3, 1, 1, bias=False)
self.bn3_0 = nn.BatchNorm2d(nf * 8, affine=True)
self.conv3_1 = nn.Conv2d(nf * 8, nf * 8, 4, 2, 1, bias=False)
self.bn3_1 = nn.BatchNorm2d(nf * 8, affine=True)
# [512, 8, 8]
self.conv4_0 = nn.Conv2d(nf * 8, nf * 8, 3, 1, 1, bias=False)
self.bn4_0 = nn.BatchNorm2d(nf * 8, affine=True)
self.conv4_1 = nn.Conv2d(nf * 8, nf * 8, 4, 2, 1, bias=False)
self.bn4_1 = nn.BatchNorm2d(nf * 8, affine=True)
final_nf = nf * 8
2019-08-23 13:42:47 +00:00
self.extra_conv = extra_conv
if self.extra_conv:
self.conv5_0 = nn.Conv2d(nf * 8, nf * 16, 3, 1, 1, bias=False)
self.bn5_0 = nn.BatchNorm2d(nf * 16, affine=True)
self.conv5_1 = nn.Conv2d(nf * 16, nf * 16, 4, 2, 1, bias=False)
self.bn5_1 = nn.BatchNorm2d(nf * 16, affine=True)
input_img_factor = input_img_factor // 2
final_nf = nf * 16
self.linear1 = nn.Linear(final_nf * 4 * input_img_factor * 4 * input_img_factor, 100)
2019-08-23 13:42:47 +00:00
self.linear2 = nn.Linear(100, 1)
# activation function
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
def forward(self, x):
2019-08-23 13:42:47 +00:00
fea = self.lrelu(self.conv0_0(x))
fea = self.lrelu(self.bn0_1(self.conv0_1(fea)))
2020-05-12 16:08:12 +00:00
#fea = torch.cat([fea, skip_med], dim=1)
2019-08-23 13:42:47 +00:00
fea = self.lrelu(self.bn1_0(self.conv1_0(fea)))
fea = self.lrelu(self.bn1_1(self.conv1_1(fea)))
2020-05-12 16:08:12 +00:00
#fea = torch.cat([fea, skip_lo], dim=1)
2019-08-23 13:42:47 +00:00
fea = self.lrelu(self.bn2_0(self.conv2_0(fea)))
fea = self.lrelu(self.bn2_1(self.conv2_1(fea)))
fea = self.lrelu(self.bn3_0(self.conv3_0(fea)))
fea = self.lrelu(self.bn3_1(self.conv3_1(fea)))
fea = self.lrelu(self.bn4_0(self.conv4_0(fea)))
fea = self.lrelu(self.bn4_1(self.conv4_1(fea)))
if self.extra_conv:
fea = self.lrelu(self.bn5_0(self.conv5_0(fea)))
fea = self.lrelu(self.bn5_1(self.conv5_1(fea)))
fea = fea.contiguous().view(fea.size(0), -1)
2019-08-23 13:42:47 +00:00
fea = self.lrelu(self.linear1(fea))
out = self.linear2(fea)
return out
2020-07-06 03:49:09 +00:00
class Discriminator_VGG_128_GN(nn.Module):
# input_img_factor = multiplier to support images over 128x128. Only certain factors are supported.
def __init__(self, in_nc, nf, input_img_factor=1):
super(Discriminator_VGG_128_GN, self).__init__()
# [64, 128, 128]
self.conv0_0 = nn.Conv2d(in_nc, nf, 3, 1, 1, bias=True)
self.conv0_1 = nn.Conv2d(nf, nf, 4, 2, 1, bias=False)
self.bn0_1 = nn.GroupNorm(8, nf, affine=True)
# [64, 64, 64]
self.conv1_0 = nn.Conv2d(nf, nf * 2, 3, 1, 1, bias=False)
self.bn1_0 = nn.GroupNorm(8, nf * 2, affine=True)
self.conv1_1 = nn.Conv2d(nf * 2, nf * 2, 4, 2, 1, bias=False)
self.bn1_1 = nn.GroupNorm(8, nf * 2, affine=True)
# [128, 32, 32]
self.conv2_0 = nn.Conv2d(nf * 2, nf * 4, 3, 1, 1, bias=False)
self.bn2_0 = nn.GroupNorm(8, nf * 4, affine=True)
self.conv2_1 = nn.Conv2d(nf * 4, nf * 4, 4, 2, 1, bias=False)
self.bn2_1 = nn.GroupNorm(8, nf * 4, affine=True)
# [256, 16, 16]
self.conv3_0 = nn.Conv2d(nf * 4, nf * 8, 3, 1, 1, bias=False)
self.bn3_0 = nn.GroupNorm(8, nf * 8, affine=True)
self.conv3_1 = nn.Conv2d(nf * 8, nf * 8, 4, 2, 1, bias=False)
self.bn3_1 = nn.GroupNorm(8, nf * 8, affine=True)
# [512, 8, 8]
self.conv4_0 = nn.Conv2d(nf * 8, nf * 8, 3, 1, 1, bias=False)
self.bn4_0 = nn.GroupNorm(8, nf * 8, affine=True)
self.conv4_1 = nn.Conv2d(nf * 8, nf * 8, 4, 2, 1, bias=False)
self.bn4_1 = nn.GroupNorm(8, nf * 8, affine=True)
final_nf = nf * 8
self.linear1 = nn.Linear(final_nf * 4 * input_img_factor * 4 * input_img_factor, 100)
self.linear2 = nn.Linear(100, 1)
# activation function
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
def forward(self, x):
fea = self.lrelu(self.conv0_0(x))
fea = self.lrelu(self.bn0_1(self.conv0_1(fea)))
#fea = torch.cat([fea, skip_med], dim=1)
fea = self.lrelu(self.bn1_0(self.conv1_0(fea)))
fea = self.lrelu(self.bn1_1(self.conv1_1(fea)))
#fea = torch.cat([fea, skip_lo], dim=1)
fea = self.lrelu(self.bn2_0(self.conv2_0(fea)))
fea = self.lrelu(self.bn2_1(self.conv2_1(fea)))
fea = self.lrelu(self.bn3_0(self.conv3_0(fea)))
fea = self.lrelu(self.bn3_1(self.conv3_1(fea)))
fea = self.lrelu(self.bn4_0(self.conv4_0(fea)))
fea = self.lrelu(self.bn4_1(self.conv4_1(fea)))
fea = fea.contiguous().view(fea.size(0), -1)
fea = self.lrelu(self.linear1(fea))
out = self.linear2(fea)
return out
2020-07-06 03:49:09 +00:00
class Discriminator_VGG_PixLoss(nn.Module):
def __init__(self, in_nc, nf):
super(Discriminator_VGG_PixLoss, self).__init__()
# [64, 128, 128]
self.conv0_0 = nn.Conv2d(in_nc, nf, 3, 1, 1, bias=True)
self.conv0_1 = nn.Conv2d(nf, nf, 4, 2, 1, bias=False)
2020-07-07 02:59:59 +00:00
self.bn0_1 = nn.GroupNorm(8, nf, affine=True)
2020-07-06 03:49:09 +00:00
# [64, 64, 64]
self.conv1_0 = nn.Conv2d(nf, nf * 2, 3, 1, 1, bias=False)
2020-07-07 02:59:59 +00:00
self.bn1_0 = nn.GroupNorm(8, nf * 2, affine=True)
2020-07-06 03:49:09 +00:00
self.conv1_1 = nn.Conv2d(nf * 2, nf * 2, 4, 2, 1, bias=False)
2020-07-07 02:59:59 +00:00
self.bn1_1 = nn.GroupNorm(8, nf * 2, affine=True)
2020-07-06 03:49:09 +00:00
# [128, 32, 32]
self.conv2_0 = nn.Conv2d(nf * 2, nf * 4, 3, 1, 1, bias=False)
2020-07-07 02:59:59 +00:00
self.bn2_0 = nn.GroupNorm(8, nf * 4, affine=True)
2020-07-06 03:49:09 +00:00
self.conv2_1 = nn.Conv2d(nf * 4, nf * 4, 4, 2, 1, bias=False)
2020-07-07 02:59:59 +00:00
self.bn2_1 = nn.GroupNorm(8, nf * 4, affine=True)
2020-07-06 03:49:09 +00:00
# [256, 16, 16]
self.conv3_0 = nn.Conv2d(nf * 4, nf * 8, 3, 1, 1, bias=False)
2020-07-07 02:59:59 +00:00
self.bn3_0 = nn.GroupNorm(8, nf * 8, affine=True)
2020-07-06 03:49:09 +00:00
self.conv3_1 = nn.Conv2d(nf * 8, nf * 8, 4, 2, 1, bias=False)
2020-07-07 02:59:59 +00:00
self.bn3_1 = nn.GroupNorm(8, nf * 8, affine=True)
2020-07-06 03:49:09 +00:00
# [512, 8, 8]
self.conv4_0 = nn.Conv2d(nf * 8, nf * 8, 3, 1, 1, bias=False)
2020-07-07 02:59:59 +00:00
self.bn4_0 = nn.GroupNorm(8, nf * 8, affine=True)
2020-07-06 03:49:09 +00:00
self.conv4_1 = nn.Conv2d(nf * 8, nf * 8, 4, 2, 1, bias=False)
2020-07-07 02:59:59 +00:00
self.bn4_1 = nn.GroupNorm(8, nf * 8, affine=True)
2020-07-06 03:49:09 +00:00
2020-07-07 02:59:59 +00:00
self.reduce_1 = ConvGnLelu(nf * 8, nf * 4, bias=False)
self.pix_loss_collapse = ConvGnLelu(nf * 4, 1, bias=False, norm=False, activation=False)
2020-07-06 03:49:09 +00:00
# Pyramid network: upsample with residuals and produce losses at multiple resolutions.
self.up3_decimate = ConvGnLelu(nf * 8, nf * 8, kernel_size=3, bias=True, activation=False)
2020-07-07 02:59:59 +00:00
self.up3_converge = ConvGnLelu(nf * 16, nf * 8, kernel_size=3, bias=False)
self.up3_proc = ConvGnLelu(nf * 8, nf * 8, bias=False)
self.up3_reduce = ConvGnLelu(nf * 8, nf * 4, bias=False)
self.up3_pix = ConvGnLelu(nf * 4, 1, bias=False, norm=False, activation=False)
2020-07-07 02:59:59 +00:00
self.up2_decimate = ConvGnLelu(nf * 8, nf * 4, kernel_size=1, bias=True, activation=False)
2020-07-07 02:59:59 +00:00
self.up2_converge = ConvGnLelu(nf * 8, nf * 4, kernel_size=3, bias=False)
self.up2_proc = ConvGnLelu(nf * 4, nf * 4, bias=False)
self.up2_reduce = ConvGnLelu(nf * 4, nf * 2, bias=False)
self.up2_pix = ConvGnLelu(nf * 2, 1, bias=False, norm=False, activation=False)
2020-07-06 03:49:09 +00:00
# activation function
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
def forward(self, x, flatten=True):
fea0 = self.lrelu(self.conv0_0(x))
fea0 = self.lrelu(self.bn0_1(self.conv0_1(fea0)))
2020-07-06 03:49:09 +00:00
fea1 = self.lrelu(self.bn1_0(self.conv1_0(fea0)))
fea1 = self.lrelu(self.bn1_1(self.conv1_1(fea1)))
2020-07-06 03:49:09 +00:00
fea2 = self.lrelu(self.bn2_0(self.conv2_0(fea1)))
fea2 = self.lrelu(self.bn2_1(self.conv2_1(fea2)))
2020-07-06 03:49:09 +00:00
fea3 = self.lrelu(self.bn3_0(self.conv3_0(fea2)))
fea3 = self.lrelu(self.bn3_1(self.conv3_1(fea3)))
2020-07-06 03:49:09 +00:00
fea4 = self.lrelu(self.bn4_0(self.conv4_0(fea3)))
fea4 = self.lrelu(self.bn4_1(self.conv4_1(fea4)))
2020-07-06 03:49:09 +00:00
loss = self.reduce_1(fea4)
# "Weight" all losses the same by interpolating them to the highest dimension.
loss = self.pix_loss_collapse(loss)
loss = F.interpolate(loss, scale_factor=4, mode="nearest")
# And the pyramid network!
dec3 = self.up3_decimate(F.interpolate(fea4, scale_factor=2, mode="nearest"))
dec3 = torch.cat([dec3, fea3], dim=1)
dec3 = self.up3_converge(dec3)
dec3 = self.up3_proc(dec3)
loss3 = self.up3_reduce(dec3)
loss3 = self.up3_pix(loss3)
loss3 = F.interpolate(loss3, scale_factor=2, mode="nearest")
dec2 = self.up2_decimate(F.interpolate(dec3, scale_factor=2, mode="nearest"))
dec2 = torch.cat([dec2, fea2], dim=1)
dec2 = self.up2_converge(dec2)
dec2 = self.up2_proc(dec2)
2020-07-09 03:27:48 +00:00
dec2 = self.up2_reduce(dec2)
loss2 = self.up2_pix(dec2)
# Compress all of the loss values into the batch dimension. The actual loss attached to this output will
# then know how to handle them.
combined_losses = torch.cat([loss, loss3, loss2], dim=1)
return combined_losses.view(-1, 1)
2020-07-06 03:49:09 +00:00
def pixgan_parameters(self):
return 3, 8
class Discriminator_UNet(nn.Module):
def __init__(self, in_nc, nf):
2020-07-11 04:50:56 +00:00
super(Discriminator_UNet, self).__init__()
# [64, 128, 128]
2020-07-11 04:52:02 +00:00
self.conv0_0 = ConvGnLelu(in_nc, nf, kernel_size=3, bias=True, activation=False)
self.conv0_1 = ConvGnLelu(nf, nf, kernel_size=3, stride=2, bias=False)
# [64, 64, 64]
self.conv1_0 = ConvGnLelu(nf, nf * 2, kernel_size=3, bias=False)
self.conv1_1 = ConvGnLelu(nf * 2, nf * 2, kernel_size=3, stride=2, bias=False)
# [128, 32, 32]
self.conv2_0 = ConvGnLelu(nf * 2, nf * 4, kernel_size=3, bias=False)
self.conv2_1 = ConvGnLelu(nf * 4, nf * 4, kernel_size=3, stride=2, bias=False)
# [256, 16, 16]
self.conv3_0 = ConvGnLelu(nf * 4, nf * 8, kernel_size=3, bias=False)
self.conv3_1 = ConvGnLelu(nf * 8, nf * 8, kernel_size=3, stride=2, bias=False)
# [512, 8, 8]
self.conv4_0 = ConvGnLelu(nf * 8, nf * 8, kernel_size=3, bias=False)
self.conv4_1 = ConvGnLelu(nf * 8, nf * 8, kernel_size=3, stride=2, bias=False)
2020-07-11 04:57:34 +00:00
self.up1 = ExpansionBlock(nf * 8, nf * 8, block=ConvGnLelu)
self.proc1 = ConvGnLelu(nf * 8, nf * 8, bias=False)
self.collapse1 = ConvGnLelu(nf * 8, 1, bias=True, norm=False, activation=False)
2020-07-11 04:57:34 +00:00
self.up2 = ExpansionBlock(nf * 8, nf * 4, block=ConvGnLelu)
self.proc2 = ConvGnLelu(nf * 4, nf * 4, bias=False)
self.collapse2 = ConvGnLelu(nf * 4, 1, bias=True, norm=False, activation=False)
2020-07-11 04:57:34 +00:00
self.up3 = ExpansionBlock(nf * 4, nf * 2, block=ConvGnLelu)
self.proc3 = ConvGnLelu(nf * 2, nf * 2, bias=False)
self.collapse3 = ConvGnLelu(nf * 2, 1, bias=True, norm=False, activation=False)
def forward(self, x, flatten=True):
fea0 = self.conv0_0(x)
fea0 = self.conv0_1(fea0)
fea1 = self.conv1_0(fea0)
fea1 = self.conv1_1(fea1)
fea2 = self.conv2_0(fea1)
fea2 = self.conv2_1(fea2)
fea3 = self.conv3_0(fea2)
fea3 = self.conv3_1(fea3)
fea4 = self.conv4_0(fea3)
fea4 = self.conv4_1(fea4)
# And the pyramid network!
u1 = self.up1(fea4, fea3)
loss1 = self.collapse1(self.proc1(u1))
u2 = self.up2(u1, fea2)
loss2 = self.collapse2(self.proc2(u2))
u3 = self.up3(u2, fea1)
loss3 = self.collapse3(self.proc3(u3))
res = loss3.shape[2:]
# Compress all of the loss values into the batch dimension. The actual loss attached to this output will
# then know how to handle them.
combined_losses = torch.cat([F.interpolate(loss1, scale_factor=4),
F.interpolate(loss2, scale_factor=2),
F.interpolate(loss3, scale_factor=1)], dim=1)
return combined_losses.view(-1, 1)
def pixgan_parameters(self):
return 3, 4
import functools
from models.archs.SwitchedResidualGenerator_arch import MultiConvBlock, ConfigurableSwitchComputer, BareConvSwitch
from switched_conv_util import save_attention_to_image
from switched_conv import compute_attention_specificity, AttentionNorm
2020-07-25 23:16:54 +00:00
class ReducingMultiplexer(nn.Module):
def __init__(self, nf, num_channels):
super(ReducingMultiplexer, self).__init__()
self.conv1_0 = ConvGnSilu(nf, nf * 2, kernel_size=3, bias=False)
self.conv1_1 = ConvGnSilu(nf * 2, nf * 2, kernel_size=3, stride=2, bias=False)
# [128, 32, 32]
self.conv2_0 = ConvGnSilu(nf * 2, nf * 4, kernel_size=3, bias=False)
self.conv2_1 = ConvGnSilu(nf * 4, nf * 4, kernel_size=3, stride=2, bias=False)
# [256, 16, 16]
self.conv3_0 = ConvGnSilu(nf * 4, nf * 8, kernel_size=3, bias=False)
self.conv3_1 = ConvGnSilu(nf * 8, nf * 8, kernel_size=3, stride=2, bias=False)
self.exp1 = ExpansionBlock(nf * 8, nf * 4)
self.exp2 = ExpansionBlock(nf * 4, nf * 2)
self.exp3 = ExpansionBlock(nf * 2, nf)
self.collapse = ConvGnSilu(nf, num_channels, norm=False, bias=True)
2020-07-25 23:16:54 +00:00
def forward(self, x):
fea1 = self.conv1_0(x)
fea1 = self.conv1_1(fea1)
fea2 = self.conv2_0(fea1)
fea2 = self.conv2_1(fea2)
fea3 = self.conv3_0(fea2)
fea3 = self.conv3_1(fea3)
up = self.exp1(fea3, fea2)
up = self.exp2(up, fea1)
up = self.exp3(up, x)
return self.collapse(up)
# Differs from ConfigurableSwitchComputer in that the connections are not residual and the multiplexer is fed directly in.
class ConfigurableLinearSwitchComputer(nn.Module):
def __init__(self, out_filters, multiplexer_net, pre_transform_block, transform_block, transform_count, attention_norm,
init_temp=20, add_scalable_noise_to_transforms=False):
super(ConfigurableLinearSwitchComputer, self).__init__()
self.multiplexer = multiplexer_net
self.pre_transform = pre_transform_block
self.transforms = nn.ModuleList([transform_block() for _ in range(transform_count)])
self.add_noise = add_scalable_noise_to_transforms
self.noise_scale = nn.Parameter(torch.full((1,), float(1e-3)))
# And the switch itself, including learned scalars
self.switch = BareConvSwitch(initial_temperature=init_temp, attention_norm=AttentionNorm(transform_count, accumulator_size=16 * transform_count) if attention_norm else None)
self.post_switch_conv = ConvBnLelu(out_filters, out_filters, norm=False, bias=True)
# The post_switch_conv gets a low scale initially. The network can decide to magnify it (or not)
# depending on its needs.
self.psc_scale = nn.Parameter(torch.full((1,), float(.1)))
2020-07-25 23:16:54 +00:00
def forward(self, x, output_attention_weights=False, extra_arg=None):
if self.add_noise:
rand_feature = torch.randn_like(x) * self.noise_scale
x = x + rand_feature
2020-07-25 23:16:54 +00:00
if self.pre_transform:
x = self.pre_transform(x)
xformed = [t.forward(x) for t in self.transforms]
m = self.multiplexer(x)
outputs, attention = self.switch(xformed, m, True)
outputs = self.post_switch_conv(outputs)
if output_attention_weights:
return outputs, attention
else:
return outputs
def set_temperature(self, temp):
self.switch.set_attention_temperature(temp)
2020-07-25 23:16:54 +00:00
def create_switched_downsampler(nf, nf_out, num_channels, initial_temp=10):
multiplx = ReducingMultiplexer(nf, num_channels)
pretransform = None
transform_fn = functools.partial(MultiConvBlock, nf, nf, nf_out, kernel_size=3, depth=2)
return ConfigurableLinearSwitchComputer(nf_out, multiplx,
pre_transform_block=pretransform, transform_block=transform_fn,
attention_norm=True,
transform_count=num_channels, init_temp=initial_temp,
add_scalable_noise_to_transforms=False)
class Discriminator_switched(nn.Module):
def __init__(self, in_nc, nf, initial_temp=10, final_temperature_step=50000):
super(Discriminator_switched, self).__init__()
# [64, 128, 128]
self.conv0_0 = ConvGnLelu(in_nc, nf, kernel_size=3, bias=True, activation=False)
self.conv0_1 = ConvGnLelu(nf, nf, kernel_size=3, stride=2, bias=False)
# [64, 64, 64]
2020-07-25 23:16:54 +00:00
self.sw = create_switched_downsampler(nf, nf, 8)
self.switches = [self.sw]
self.conv1_1 = ConvGnLelu(nf, nf * 2, kernel_size=3, stride=2, bias=False)
# [128, 32, 32]
self.conv2_0 = ConvGnLelu(nf * 2, nf * 4, kernel_size=3, bias=False)
self.conv2_1 = ConvGnLelu(nf * 4, nf * 4, kernel_size=3, stride=2, bias=False)
# [256, 16, 16]
self.conv3_0 = ConvGnLelu(nf * 4, nf * 8, kernel_size=3, bias=False)
self.conv3_1 = ConvGnLelu(nf * 8, nf * 8, kernel_size=3, stride=2, bias=False)
# [512, 8, 8]
self.conv4_0 = ConvGnLelu(nf * 8, nf * 8, kernel_size=3, bias=False)
self.conv4_1 = ConvGnLelu(nf * 8, nf * 8, kernel_size=3, stride=2, bias=False)
self.exp1 = ExpansionBlock(nf * 8, nf * 8, block=ConvGnLelu)
2020-07-25 23:16:54 +00:00
self.exp2 = ExpansionBlock(nf * 8, nf * 4, block=ConvGnLelu)
self.exp3 = ExpansionBlock(nf * 4, nf * 2, block=ConvGnLelu)
self.proc3 = ConvGnLelu(nf * 2, nf * 2, bias=False)
self.collapse3 = ConvGnLelu(nf * 2, 1, bias=True, norm=False, activation=False)
self.init_temperature = initial_temp
self.final_temperature_step = final_temperature_step
self.attentions = None
def forward(self, x, flatten=True):
fea0 = self.conv0_0(x)
fea0 = self.conv0_1(fea0)
2020-07-25 23:16:54 +00:00
fea1, att = self.sw(fea0, True)
self.attentions = [att]
fea1 = self.conv1_1(fea1)
fea2 = self.conv2_0(fea1)
fea2 = self.conv2_1(fea2)
fea3 = self.conv3_0(fea2)
fea3 = self.conv3_1(fea3)
fea4 = self.conv4_0(fea3)
fea4 = self.conv4_1(fea4)
u1 = self.exp1(fea4, fea3)
2020-07-25 23:16:54 +00:00
u2 = self.exp2(u1, fea2)
u3 = self.exp3(u2, fea1)
loss3 = self.collapse3(self.proc3(u3))
return loss3.view(-1, 1)
def pixgan_parameters(self):
return 1, 4
def set_temperature(self, temp):
[sw.set_temperature(temp) for sw in self.switches]
def update_for_step(self, step, experiments_path='.'):
if self.attentions:
for i, sw in enumerate(self.switches):
temp_loss_per_step = (self.init_temperature - 1) / self.final_temperature_step
sw.set_temperature(min(self.init_temperature,
max(self.init_temperature - temp_loss_per_step * step, 1)))
if step % 50 == 0:
[save_attention_to_image(experiments_path, self.attentions[i], 8, step, "disc_a%i" % (i+1,), l_mult=10) for i in range(len(self.attentions))]
def get_debug_values(self, step):
temp = self.switches[0].switch.temperature
mean_hists = [compute_attention_specificity(att, 2) for att in self.attentions]
means = [i[0] for i in mean_hists]
hists = [i[1].clone().detach().cpu().flatten() for i in mean_hists]
val = {"disc_switch_temperature": temp}
for i in range(len(means)):
val["disc_switch_%i_specificity" % (i,)] = means[i]
val["disc_switch_%i_histogram" % (i,)] = hists[i]
return val
class Discriminator_UNet_FeaOut(nn.Module):
def __init__(self, in_nc, nf, feature_mode=False):
super(Discriminator_UNet_FeaOut, self).__init__()
# [64, 128, 128]
self.conv0_0 = ConvGnLelu(in_nc, nf, kernel_size=3, bias=True, activation=False)
self.conv0_1 = ConvGnLelu(nf, nf, kernel_size=3, stride=2, bias=False)
# [64, 64, 64]
self.conv1_0 = ConvGnLelu(nf, nf * 2, kernel_size=3, bias=False)
self.conv1_1 = ConvGnLelu(nf * 2, nf * 2, kernel_size=3, stride=2, bias=False)
# [128, 32, 32]
self.conv2_0 = ConvGnLelu(nf * 2, nf * 4, kernel_size=3, bias=False)
self.conv2_1 = ConvGnLelu(nf * 4, nf * 4, kernel_size=3, stride=2, bias=False)
# [256, 16, 16]
self.conv3_0 = ConvGnLelu(nf * 4, nf * 8, kernel_size=3, bias=False)
self.conv3_1 = ConvGnLelu(nf * 8, nf * 8, kernel_size=3, stride=2, bias=False)
# [512, 8, 8]
self.conv4_0 = ConvGnLelu(nf * 8, nf * 8, kernel_size=3, bias=False)
self.conv4_1 = ConvGnLelu(nf * 8, nf * 8, kernel_size=3, stride=2, bias=False)
self.up1 = ExpansionBlock(nf * 8, nf * 8, block=ConvGnLelu)
self.proc1 = ConvGnLelu(nf * 8, nf * 8, bias=False)
self.fea_proc = ConvGnLelu(nf * 8, nf * 8, bias=True, norm=False, activation=False)
self.collapse1 = ConvGnLelu(nf * 8, 1, bias=True, norm=False, activation=False)
self.feature_mode = feature_mode
def forward(self, x, output_feature_vector=False):
fea0 = self.conv0_0(x)
fea0 = self.conv0_1(fea0)
fea1 = self.conv1_0(fea0)
fea1 = self.conv1_1(fea1)
fea2 = self.conv2_0(fea1)
fea2 = self.conv2_1(fea2)
fea3 = self.conv3_0(fea2)
fea3 = self.conv3_1(fea3)
fea4 = self.conv4_0(fea3)
fea4 = self.conv4_1(fea4)
# And the pyramid network!
u1 = self.up1(fea4, fea3)
loss1 = self.collapse1(self.proc1(u1))
fea_out = self.fea_proc(u1)
combined_losses = F.interpolate(loss1, scale_factor=4)
if output_feature_vector:
return combined_losses.view(-1, 1), fea_out
else:
return combined_losses.view(-1, 1)
def pixgan_parameters(self):
return 1, 4