DL-Art-School/codes/models/audio/music/transformer_diffusion13.py

264 lines
11 KiB
Python
Raw Normal View History

import itertools
from random import randrange
from time import time
import torch
import torch.nn as nn
import torch.nn.functional as F
from models.arch_util import ResBlock, TimestepEmbedSequential, AttentionBlock
from models.audio.music.gpt_music2 import UpperEncoder, GptMusicLower
from models.audio.music.music_quantizer2 import MusicQuantizer2
from models.audio.tts.lucidrains_dvae import DiscreteVAE
from models.diffusion.nn import timestep_embedding, normalization, zero_module, conv_nd, linear
from models.diffusion.unet_diffusion import TimestepBlock
from models.lucidrains.x_transformers import Encoder, Attention, RMSScaleShiftNorm, \
FeedForward
from trainer.networks import register_model
from utils.util import checkpoint, print_network
def is_latent(t):
return t.dtype == torch.float
def is_sequence(t):
return t.dtype == torch.long
class MultiGroupEmbedding(nn.Module):
def __init__(self, tokens, groups, dim):
super().__init__()
self.m = nn.ModuleList([nn.Embedding(tokens, dim // groups) for _ in range(groups)])
def forward(self, x):
h = [embedding(x[:, :, i]) for i, embedding in enumerate(self.m)]
return torch.cat(h, dim=-1)
class SubBlock(nn.Module):
def __init__(self, inp_dim, contraction_dim, blk_dim, heads, dropout):
super().__init__()
self.dropout = nn.Dropout(p=dropout, inplace=True)
self.blk_emb_proj = nn.Conv1d(blk_dim, inp_dim, 1)
self.attn = AttentionBlock(inp_dim, out_channels=contraction_dim, num_heads=heads)
self.attnorm = nn.GroupNorm(8, contraction_dim)
self.ff = nn.Conv1d(inp_dim+contraction_dim, contraction_dim, kernel_size=3, padding=1)
self.ffnorm = nn.GroupNorm(8, contraction_dim)
def forward(self, x, blk_emb):
blk_enc = self.blk_emb_proj(blk_emb)
ah = self.dropout(self.attn(torch.cat([blk_enc, x], dim=-1)))
ah = ah[:,:,blk_emb.shape[-1]:] # Strip off the blk_emb and re-align with x.
ah = F.gelu(self.attnorm(ah))
h = torch.cat([ah, x], dim=1)
hf = self.dropout(checkpoint(self.ff, h))
hf = F.gelu(self.ffnorm(hf))
h = torch.cat([h, hf], dim=1)
return h
class ConcatAttentionBlock(TimestepBlock):
def __init__(self, trunk_dim, contraction_dim, heads, dropout):
super().__init__()
self.prenorm = nn.GroupNorm(8, trunk_dim)
self.block1 = SubBlock(trunk_dim, contraction_dim, trunk_dim, heads, dropout)
self.block2 = SubBlock(trunk_dim+contraction_dim*2, contraction_dim, trunk_dim, heads, dropout)
self.out = nn.Conv1d(contraction_dim*4, trunk_dim, kernel_size=1, bias=False)
self.out.weight.data.zero_()
def forward(self, x, blk_emb):
h = self.prenorm(x)
h = self.block1(h, blk_emb)
h = self.block2(h, blk_emb)
h = self.out(h[:,x.shape[1]:])
return h + x
class ConditioningEncoder(nn.Module):
def __init__(self,
spec_dim,
embedding_dim,
num_resolutions,
attn_blocks=6,
num_attn_heads=4,
do_checkpointing=False):
super().__init__()
attn = []
self.init = nn.Conv1d(spec_dim, embedding_dim, kernel_size=5, stride=2)
self.resolution_embedding = nn.Embedding(num_resolutions, embedding_dim)
self.resolution_embedding.weight.data.mul(.1) # Reduces the relative influence of this embedding from the start.
for a in range(attn_blocks):
attn.append(AttentionBlock(embedding_dim, num_attn_heads, do_checkpoint=do_checkpointing))
attn.append(ResBlock(embedding_dim, dims=1, checkpointing_enabled=do_checkpointing))
self.attn = nn.Sequential(*attn)
self.dim = embedding_dim
self.do_checkpointing = do_checkpointing
def forward(self, x, resolution):
h = self.init(x) + self.resolution_embedding(resolution).unsqueeze(-1)
h = self.attn(h)
return h[:, :, :6]
class TransformerDiffusion(nn.Module):
"""
A diffusion model composed entirely of stacks of transformer layers. Why would you do it any other way?
"""
def __init__(
self,
time_embed_dim=256,
resolution_steps=8,
max_window=384,
model_channels=1024,
contraction_dim=256,
num_layers=8,
in_channels=256,
input_vec_dim=1024,
out_channels=512, # mean and variance
num_heads=4,
dropout=0,
use_fp16=False,
# Parameters for regularization.
unconditioned_percentage=.1, # This implements a mechanism similar to what is used in classifier-free training.
):
super().__init__()
self.in_channels = in_channels
self.model_channels = model_channels
self.time_embed_dim = time_embed_dim
self.out_channels = out_channels
self.dropout = dropout
self.unconditioned_percentage = unconditioned_percentage
self.enable_fp16 = use_fp16
self.resolution_steps = resolution_steps
self.max_window = max_window
self.preprocessed = None
self.time_embed = nn.Sequential(
linear(time_embed_dim, time_embed_dim),
nn.SiLU(),
linear(time_embed_dim, model_channels),
)
self.resolution_embed = nn.Embedding(resolution_steps, model_channels)
self.conditioning_encoder = ConditioningEncoder(in_channels, model_channels, resolution_steps, num_attn_heads=model_channels//64)
self.unconditioned_embedding = nn.Parameter(torch.randn(1,1,model_channels))
self.inp_block = conv_nd(1, in_channels+input_vec_dim, model_channels, 3, 1, 1)
self.layers = TimestepEmbedSequential(*[ConcatAttentionBlock(model_channels, contraction_dim, num_heads, dropout) for _ in range(num_layers)])
self.out = nn.Sequential(
normalization(model_channels),
nn.SiLU(),
zero_module(conv_nd(1, model_channels, out_channels, 3, padding=1)),
)
self.debug_codes = {}
def get_grad_norm_parameter_groups(self):
attn1 = list(itertools.chain.from_iterable([lyr.block1.attn.parameters() for lyr in self.layers]))
attn2 = list(itertools.chain.from_iterable([lyr.block2.attn.parameters() for lyr in self.layers]))
ff1 = list(itertools.chain.from_iterable([lyr.block1.ff.parameters() for lyr in self.layers]))
ff2 = list(itertools.chain.from_iterable([lyr.block2.ff.parameters() for lyr in self.layers]))
blkout_layers = list(itertools.chain.from_iterable([lyr.out.parameters() for lyr in self.layers]))
groups = {
'prenorms': list(itertools.chain.from_iterable([lyr.prenorm.parameters() for lyr in self.layers])),
'blk1_attention_layers': attn1,
'blk2_attention_layers': attn2,
'attention_layers': attn1 + attn2,
'blk1_ff_layers': ff1,
'blk2_ff_layers': ff2,
'ff_layers': ff1 + ff2,
'block_out_layers': blkout_layers,
'out': list(self.out.parameters()),
'x_proj': list(self.inp_block.parameters()),
'layers': list(self.layers.parameters()),
'time_embed': list(self.time_embed.parameters()),
'resolution_embed': list(self.resolution_embed.parameters()),
}
return groups
def input_to_random_resolution_and_window(self, x, x_prior):
assert x.shape == x_prior.shape, f'{x.shape} {x_prior.shape}'
resolution = randrange(0, self.resolution_steps)
resolution_scale = 2 ** resolution
s = F.interpolate(x, scale_factor=1/resolution_scale, mode='linear', align_corners=True)
s_prior = F.interpolate(x_prior, scale_factor=1/resolution_scale, mode='linear', align_corners=True)
s_diff = s.shape[-1] - self.max_window
if s_diff > 1:
start = randrange(0, s_diff)
s = s[:,:,start:start+self.max_window]
s_prior = x_prior[:,:,start:start+self.max_window]
s_prior = F.interpolate(s_prior, scale_factor=.25, mode='linear', align_corners=True)
s_prior = F.interpolate(s_prior, size=(s.shape[-1],), mode='linear', align_corners=True)
2022-07-18 23:09:13 +00:00
self.preprocessed = (s_prior, torch.tensor([resolution] * x.shape[0], dtype=torch.long, device=x.device))
return s
def forward(self, x, timesteps, x_prior=None, resolution=None, conditioning_input=None, conditioning_free=False):
unused_params = []
conditioning_input = x_prior if conditioning_input is None else conditioning_input
h = x
if resolution is None:
assert self.preprocessed is not None, 'Preprocessing function not called.'
h = x
h_sub, resolution = self.preprocessed
self.preprocessed = None
else:
h_sub = F.interpolate(x_prior, scale_factor=4, mode='linear', align_corners=True)
assert h.shape == h_sub.shape, f'{h.shape} {h_sub.shape}'
if conditioning_free:
code_emb = self.unconditioned_embedding.repeat(x.shape[0], x.shape[-1], 1)
else:
MIN_COND_LEN = 200
MAX_COND_LEN = 1200
if self.training and conditioning_input.shape[-1] > MAX_COND_LEN:
clen = randrange(MIN_COND_LEN, MAX_COND_LEN)
gap = conditioning_input.shape[-1] - clen
cstart = randrange(0, gap)
conditioning_input = conditioning_input[:,:,cstart:cstart+clen]
code_emb = self.conditioning_encoder(conditioning_input, resolution)
unused_params.append(self.unconditioned_embedding)
with torch.autocast(x.device.type, enabled=self.enable_fp16):
time_emb = self.time_embed(timestep_embedding(timesteps, self.time_embed_dim))
res_emb = self.resolution_embed(resolution)
blk_emb = torch.cat([time_emb.unsqueeze(-1), res_emb.unsqueeze(-1), code_emb], dim=-1)
h = torch.cat([h, h_sub], dim=1)
h = self.inp_block(h)
for layer in self.layers:
h = checkpoint(layer, h, blk_emb)
h = h.float()
out = self.out(h)
# Involve probabilistic or possibly unused parameters in loss so we don't get DDP errors.
extraneous_addition = 0
for p in unused_params:
extraneous_addition = extraneous_addition + p.mean()
out = out + extraneous_addition * 0
return out
@register_model
def register_transformer_diffusion13(opt_net, opt):
return TransformerDiffusion(**opt_net['kwargs'])
def test_tfd():
2022-07-18 23:09:13 +00:00
clip = torch.randn(2,256,10336)
cond = torch.randn(2,256,10336)
ts = torch.LongTensor([600, 600])
model = TransformerDiffusion(in_channels=256, model_channels=1024, contraction_dim=512,
num_heads=512//64, input_vec_dim=256, num_layers=12, dropout=.1)
for k in range(100):
2022-07-18 23:09:13 +00:00
x = model.input_to_random_resolution_and_window(clip, x_prior=clip)
model(x, ts, clip)
if __name__ == '__main__':
test_tfd()