542 lines
23 KiB
Python
542 lines
23 KiB
Python
|
import math
|
||
|
from typing import Optional, Tuple
|
||
|
|
||
|
import numpy as np
|
||
|
import torch
|
||
|
import torch.nn as nn
|
||
|
import torch.nn.functional as F
|
||
|
from transformers.deepspeed import is_deepspeed_zero3_enabled
|
||
|
|
||
|
|
||
|
class Mel2Vec2FeatureProjection(nn.Module):
|
||
|
def __init__(self, inner_dim, dropout):
|
||
|
super().__init__()
|
||
|
self.layer_norm = nn.LayerNorm(inner_dim, eps=1e-5)
|
||
|
self.projection = nn.Linear(inner_dim, inner_dim)
|
||
|
self.dropout = nn.Dropout(dropout)
|
||
|
|
||
|
def forward(self, hidden_states):
|
||
|
# non-projected hidden states are needed for quantization
|
||
|
norm_hidden_states = self.layer_norm(hidden_states)
|
||
|
hidden_states = self.projection(norm_hidden_states)
|
||
|
hidden_states = self.dropout(hidden_states)
|
||
|
return hidden_states, norm_hidden_states
|
||
|
|
||
|
|
||
|
# Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->Wav2Vec2
|
||
|
class Wav2Vec2Attention(nn.Module):
|
||
|
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
embed_dim: int,
|
||
|
num_heads: int,
|
||
|
dropout: float = 0.0,
|
||
|
is_decoder: bool = False,
|
||
|
bias: bool = True,
|
||
|
):
|
||
|
super().__init__()
|
||
|
self.embed_dim = embed_dim
|
||
|
self.num_heads = num_heads
|
||
|
self.dropout = dropout
|
||
|
self.head_dim = embed_dim // num_heads
|
||
|
|
||
|
if (self.head_dim * num_heads) != self.embed_dim:
|
||
|
raise ValueError(
|
||
|
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
|
||
|
f" and `num_heads`: {num_heads})."
|
||
|
)
|
||
|
self.scaling = self.head_dim**-0.5
|
||
|
self.is_decoder = is_decoder
|
||
|
|
||
|
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
||
|
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
||
|
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
||
|
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
||
|
|
||
|
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
||
|
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
hidden_states: torch.Tensor,
|
||
|
key_value_states: Optional[torch.Tensor] = None,
|
||
|
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
layer_head_mask: Optional[torch.Tensor] = None,
|
||
|
output_attentions: bool = False,
|
||
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
||
|
"""Input shape: Batch x Time x Channel"""
|
||
|
|
||
|
# if key_value_states are provided this layer is used as a cross-attention layer
|
||
|
# for the decoder
|
||
|
is_cross_attention = key_value_states is not None
|
||
|
|
||
|
bsz, tgt_len, _ = hidden_states.size()
|
||
|
|
||
|
# get query proj
|
||
|
query_states = self.q_proj(hidden_states) * self.scaling
|
||
|
# get key, value proj
|
||
|
if is_cross_attention and past_key_value is not None:
|
||
|
# reuse k,v, cross_attentions
|
||
|
key_states = past_key_value[0]
|
||
|
value_states = past_key_value[1]
|
||
|
elif is_cross_attention:
|
||
|
# cross_attentions
|
||
|
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
|
||
|
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
|
||
|
elif past_key_value is not None:
|
||
|
# reuse k, v, self_attention
|
||
|
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
||
|
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
||
|
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
||
|
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
||
|
else:
|
||
|
# self_attention
|
||
|
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
||
|
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
||
|
|
||
|
if self.is_decoder:
|
||
|
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
|
||
|
# Further calls to cross_attention layer can then reuse all cross-attention
|
||
|
# key/value_states (first "if" case)
|
||
|
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
|
||
|
# all previous decoder key/value_states. Further calls to uni-directional self-attention
|
||
|
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
|
||
|
# if encoder bi-directional self-attention `past_key_value` is always `None`
|
||
|
past_key_value = (key_states, value_states)
|
||
|
|
||
|
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
|
||
|
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
|
||
|
key_states = key_states.view(*proj_shape)
|
||
|
value_states = value_states.view(*proj_shape)
|
||
|
|
||
|
src_len = key_states.size(1)
|
||
|
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
|
||
|
|
||
|
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
|
||
|
raise ValueError(
|
||
|
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is {attn_weights.size()}"
|
||
|
)
|
||
|
|
||
|
if attention_mask is not None:
|
||
|
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
|
||
|
raise ValueError(
|
||
|
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
|
||
|
)
|
||
|
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
|
||
|
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
||
|
|
||
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
||
|
|
||
|
if layer_head_mask is not None:
|
||
|
if layer_head_mask.size() != (self.num_heads,):
|
||
|
raise ValueError(
|
||
|
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is {layer_head_mask.size()}"
|
||
|
)
|
||
|
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
|
||
|
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
||
|
|
||
|
if output_attentions:
|
||
|
# this operation is a bit awkward, but it's required to
|
||
|
# make sure that attn_weights keeps its gradient.
|
||
|
# In order to do so, attn_weights have to be reshaped
|
||
|
# twice and have to be reused in the following
|
||
|
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
|
||
|
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
|
||
|
else:
|
||
|
attn_weights_reshaped = None
|
||
|
|
||
|
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
|
||
|
|
||
|
attn_output = torch.bmm(attn_probs, value_states)
|
||
|
|
||
|
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
|
||
|
raise ValueError(
|
||
|
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is {attn_output.size()}"
|
||
|
)
|
||
|
|
||
|
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
|
||
|
attn_output = attn_output.transpose(1, 2)
|
||
|
|
||
|
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
|
||
|
# partitioned aross GPUs when using tensor-parallelism.
|
||
|
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
|
||
|
|
||
|
attn_output = self.out_proj(attn_output)
|
||
|
|
||
|
return attn_output, attn_weights_reshaped, past_key_value
|
||
|
|
||
|
|
||
|
class Wav2Vec2FeedForward(nn.Module):
|
||
|
def __init__(self, hidden_size, intermediate_size, dropout):
|
||
|
super().__init__()
|
||
|
self.intermediate_dropout = nn.Dropout(dropout)
|
||
|
|
||
|
self.intermediate_dense = nn.Linear(hidden_size, intermediate_size)
|
||
|
self.intermediate_act_fn = F.gelu
|
||
|
|
||
|
self.output_dense = nn.Linear(intermediate_size, hidden_size)
|
||
|
self.output_dropout = nn.Dropout(dropout)
|
||
|
|
||
|
def forward(self, hidden_states):
|
||
|
hidden_states = self.intermediate_dense(hidden_states)
|
||
|
hidden_states = self.intermediate_act_fn(hidden_states)
|
||
|
hidden_states = self.intermediate_dropout(hidden_states)
|
||
|
|
||
|
hidden_states = self.output_dense(hidden_states)
|
||
|
hidden_states = self.output_dropout(hidden_states)
|
||
|
return hidden_states
|
||
|
|
||
|
|
||
|
class Wav2Vec2EncoderLayer(nn.Module):
|
||
|
def __init__(self, hidden_size, dropout):
|
||
|
super().__init__()
|
||
|
self.attention = Wav2Vec2Attention(
|
||
|
embed_dim=hidden_size,
|
||
|
num_heads=hidden_size//64,
|
||
|
dropout=dropout,
|
||
|
is_decoder=False,
|
||
|
)
|
||
|
self.dropout = nn.Dropout(dropout)
|
||
|
self.layer_norm = nn.LayerNorm(hidden_size, eps=1e-5)
|
||
|
self.feed_forward = Wav2Vec2FeedForward(hidden_size, hidden_size*2, dropout)
|
||
|
self.final_layer_norm = nn.LayerNorm(hidden_size, eps=1e-5)
|
||
|
|
||
|
def forward(self, hidden_states, attention_mask=None, output_attentions=False):
|
||
|
attn_residual = hidden_states
|
||
|
hidden_states, attn_weights, _ = self.attention(
|
||
|
hidden_states, attention_mask=attention_mask, output_attentions=output_attentions
|
||
|
)
|
||
|
hidden_states = self.dropout(hidden_states)
|
||
|
hidden_states = attn_residual + hidden_states
|
||
|
|
||
|
hidden_states = self.layer_norm(hidden_states)
|
||
|
hidden_states = hidden_states + self.feed_forward(hidden_states)
|
||
|
hidden_states = self.final_layer_norm(hidden_states)
|
||
|
|
||
|
outputs = (hidden_states,)
|
||
|
|
||
|
if output_attentions:
|
||
|
outputs += (attn_weights,)
|
||
|
|
||
|
return outputs
|
||
|
|
||
|
|
||
|
class Wav2Vec2SamePadLayer(nn.Module):
|
||
|
def __init__(self, num_conv_pos_embeddings):
|
||
|
super().__init__()
|
||
|
self.num_pad_remove = 1 if num_conv_pos_embeddings % 2 == 0 else 0
|
||
|
|
||
|
def forward(self, hidden_states):
|
||
|
if self.num_pad_remove > 0:
|
||
|
hidden_states = hidden_states[:, :, : -self.num_pad_remove]
|
||
|
return hidden_states
|
||
|
|
||
|
|
||
|
class Wav2Vec2PositionalConvEmbedding(nn.Module):
|
||
|
def __init__(self, hidden_size, num_conv_pos_embeddings=128, num_conv_pos_embedding_groups=16):
|
||
|
super().__init__()
|
||
|
self.conv = nn.Conv1d(
|
||
|
hidden_size,
|
||
|
hidden_size,
|
||
|
kernel_size=num_conv_pos_embeddings,
|
||
|
padding=num_conv_pos_embeddings // 2,
|
||
|
groups=num_conv_pos_embedding_groups,
|
||
|
)
|
||
|
|
||
|
if is_deepspeed_zero3_enabled():
|
||
|
import deepspeed
|
||
|
|
||
|
with deepspeed.zero.GatheredParameters(self.conv.weight, modifier_rank=0):
|
||
|
self.conv = nn.utils.weight_norm(self.conv, name="weight", dim=2)
|
||
|
deepspeed.zero.register_external_parameter(self, self.conv.weight_v)
|
||
|
deepspeed.zero.register_external_parameter(self, self.conv.weight_g)
|
||
|
else:
|
||
|
self.conv = nn.utils.weight_norm(self.conv, name="weight", dim=2)
|
||
|
|
||
|
self.padding = Wav2Vec2SamePadLayer(num_conv_pos_embeddings)
|
||
|
self.activation = F.gelu
|
||
|
|
||
|
def forward(self, hidden_states):
|
||
|
hidden_states = hidden_states.transpose(1, 2)
|
||
|
|
||
|
hidden_states = self.conv(hidden_states)
|
||
|
hidden_states = self.padding(hidden_states)
|
||
|
hidden_states = self.activation(hidden_states)
|
||
|
|
||
|
hidden_states = hidden_states.transpose(1, 2)
|
||
|
return hidden_states
|
||
|
|
||
|
|
||
|
class Wav2Vec2Encoder(nn.Module):
|
||
|
def __init__(self, hidden_size, dropout, num_layers, layerdrop):
|
||
|
super().__init__()
|
||
|
self.pos_conv_embed = Wav2Vec2PositionalConvEmbedding(hidden_size)
|
||
|
self.layer_norm = nn.LayerNorm(hidden_size, eps=1e-5)
|
||
|
self.dropout = nn.Dropout(dropout)
|
||
|
self.layers = nn.ModuleList([Wav2Vec2EncoderLayer(hidden_size, dropout) for _ in range(num_layers)])
|
||
|
self.gradient_checkpointing = False
|
||
|
self.layerdrop = layerdrop
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
hidden_states,
|
||
|
attention_mask=None,
|
||
|
output_attentions=False,
|
||
|
output_hidden_states=False,
|
||
|
):
|
||
|
all_hidden_states = () if output_hidden_states else None
|
||
|
|
||
|
if attention_mask is not None:
|
||
|
# make sure padded tokens output 0
|
||
|
hidden_states[~attention_mask] = 0.0
|
||
|
|
||
|
# extend attention_mask
|
||
|
attention_mask = (1.0 - attention_mask[:, None, None, :].to(dtype=hidden_states.dtype)) * -10000.0
|
||
|
attention_mask = attention_mask.expand(
|
||
|
attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1]
|
||
|
)
|
||
|
|
||
|
position_embeddings = self.pos_conv_embed(hidden_states)
|
||
|
hidden_states = hidden_states + position_embeddings
|
||
|
hidden_states = self.layer_norm(hidden_states)
|
||
|
hidden_states = self.dropout(hidden_states)
|
||
|
|
||
|
deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled()
|
||
|
|
||
|
for layer in self.layers:
|
||
|
if output_hidden_states:
|
||
|
all_hidden_states = all_hidden_states + (hidden_states,)
|
||
|
|
||
|
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
|
||
|
dropout_probability = np.random.uniform(0, 1)
|
||
|
|
||
|
skip_the_layer = True if self.training and (dropout_probability < self.layerdrop) else False
|
||
|
if not skip_the_layer or deepspeed_zero3_is_enabled:
|
||
|
# under deepspeed zero3 all gpus must run in sync
|
||
|
if self.gradient_checkpointing and self.training:
|
||
|
# create gradient checkpointing function
|
||
|
def create_custom_forward(module):
|
||
|
def custom_forward(*inputs):
|
||
|
return module(*inputs, output_attentions)
|
||
|
|
||
|
return custom_forward
|
||
|
|
||
|
layer_outputs = torch.utils.checkpoint.checkpoint(
|
||
|
create_custom_forward(layer),
|
||
|
hidden_states,
|
||
|
attention_mask,
|
||
|
)
|
||
|
else:
|
||
|
layer_outputs = layer(
|
||
|
hidden_states, attention_mask=attention_mask, output_attentions=output_attentions
|
||
|
)
|
||
|
hidden_states = layer_outputs[0]
|
||
|
|
||
|
return hidden_states
|
||
|
|
||
|
|
||
|
class Mel2Vec(nn.Module):
|
||
|
def __init__(self,
|
||
|
mel_input_channels=256,
|
||
|
inner_dim=1024,
|
||
|
layers=24,
|
||
|
dropout=.1,
|
||
|
layerdrop=0,
|
||
|
mask_time_prob=.65,
|
||
|
mask_time_length=10):
|
||
|
self.input_blocks = nn.Sequential(nn.Conv1d(mel_input_channels, inner_dim//2, kernel_size=5, padding=2, stride=2),
|
||
|
nn.GroupNorm(num_groups=8, num_channels=inner_dim, affine=True),
|
||
|
nn.SiLU(),
|
||
|
nn.Conv1d(inner_dim//2, inner_dim, kernel_size=3, padding=1, stride=2),
|
||
|
nn.GroupNorm(num_groups=8, num_channels=inner_dim, affine=True),
|
||
|
nn.SiLU(),
|
||
|
)
|
||
|
self.projector = Wav2Vec2FeatureProjection(inner_dim, dropout)
|
||
|
self.masked_spec_embed = nn.Parameter(torch.rand(inner_dim,))
|
||
|
self.encoder = Wav2Vec2Encoder(inner_dim, dropout, layers, layerdrop)
|
||
|
self.apply(self.init)
|
||
|
|
||
|
def init(self, module):
|
||
|
"""Initialize the weights"""
|
||
|
# gumbel softmax requires special init
|
||
|
if isinstance(module, Wav2Vec2PositionalConvEmbedding):
|
||
|
nn.init.normal_(
|
||
|
module.conv.weight,
|
||
|
mean=0,
|
||
|
std=2 * math.sqrt(1 / (module.conv.kernel_size[0] * module.conv.in_channels)),
|
||
|
)
|
||
|
nn.init.constant_(module.conv.bias, 0)
|
||
|
elif isinstance(module, Wav2Vec2FeatureProjection):
|
||
|
k = math.sqrt(1 / module.projection.in_features)
|
||
|
nn.init.uniform_(module.projection.weight, a=-k, b=k)
|
||
|
nn.init.uniform_(module.projection.bias, a=-k, b=k)
|
||
|
elif isinstance(module, nn.Linear):
|
||
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
||
|
if module.bias is not None:
|
||
|
module.bias.data.zero_()
|
||
|
elif isinstance(module, (nn.LayerNorm, nn.GroupNorm)):
|
||
|
module.bias.data.zero_()
|
||
|
module.weight.data.fill_(1.0)
|
||
|
elif isinstance(module, nn.Conv1d):
|
||
|
nn.init.kaiming_normal_(module.weight)
|
||
|
if module.bias is not None:
|
||
|
k = math.sqrt(module.groups / (module.in_channels * module.kernel_size[0]))
|
||
|
nn.init.uniform_(module.bias, a=-k, b=k)
|
||
|
|
||
|
def apply_masking(
|
||
|
self,
|
||
|
hidden_states: torch.FloatTensor,
|
||
|
mask_time_indices: Optional[torch.FloatTensor] = None,
|
||
|
attention_mask: Optional[torch.LongTensor] = None,
|
||
|
):
|
||
|
"""
|
||
|
Masks extracted features along time axis and/or along feature axis according to
|
||
|
[SpecAugment](https://arxiv.org/abs/1904.08779).
|
||
|
"""
|
||
|
|
||
|
# `config.apply_spec_augment` can set masking to False
|
||
|
if not getattr(self.config, "apply_spec_augment", True):
|
||
|
return hidden_states
|
||
|
|
||
|
# generate indices & apply SpecAugment along time axis
|
||
|
batch_size, sequence_length, hidden_size = hidden_states.size()
|
||
|
|
||
|
if mask_time_indices is not None:
|
||
|
# apply SpecAugment along time axis with given mask_time_indices
|
||
|
hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype)
|
||
|
elif self.config.mask_time_prob > 0 and self.training:
|
||
|
mask_time_indices = _compute_mask_indices(
|
||
|
(batch_size, sequence_length),
|
||
|
mask_prob=self.config.mask_time_prob,
|
||
|
mask_length=self.config.mask_time_length,
|
||
|
attention_mask=attention_mask,
|
||
|
min_masks=self.config.mask_time_min_masks,
|
||
|
)
|
||
|
mask_time_indices = torch.tensor(mask_time_indices, device=hidden_states.device, dtype=torch.bool)
|
||
|
hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype)
|
||
|
|
||
|
if self.config.mask_feature_prob > 0 and self.training:
|
||
|
# generate indices & apply SpecAugment along feature axis
|
||
|
mask_feature_indices = _compute_mask_indices(
|
||
|
(batch_size, hidden_size),
|
||
|
mask_prob=self.config.mask_feature_prob,
|
||
|
mask_length=self.config.mask_feature_length,
|
||
|
min_masks=self.config.mask_feature_min_masks,
|
||
|
)
|
||
|
mask_feature_indices = torch.tensor(mask_feature_indices, device=hidden_states.device, dtype=torch.bool)
|
||
|
mask_feature_indices = mask_feature_indices[:, None].expand(-1, sequence_length, -1)
|
||
|
hidden_states[mask_feature_indices] = 0
|
||
|
|
||
|
return hidden_states
|
||
|
|
||
|
def forward(self, mel):
|
||
|
proj = self.input_blocks(mel).permute(0,2,1)
|
||
|
proj, _ = self.projector(proj)
|
||
|
|
||
|
# Mask projections
|
||
|
h = self.apply_masking(proj, mask_time_indices)
|
||
|
h = self.encoder(h)
|
||
|
return h
|
||
|
|
||
|
|
||
|
class Wav2Vec2GumbelVectorQuantizer(nn.Module):
|
||
|
"""
|
||
|
Vector quantization using gumbel softmax. See `[CATEGORICAL REPARAMETERIZATION WITH
|
||
|
GUMBEL-SOFTMAX](https://arxiv.org/pdf/1611.01144.pdf) for more information.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, proj_dim=1024, codevector_dim=256, num_codevector_groups=2, num_codevectors_per_group=320):
|
||
|
super().__init__()
|
||
|
self.codevector_dim = codevector_dim
|
||
|
self.num_groups = num_codevector_groups
|
||
|
self.num_vars = num_codevectors_per_group
|
||
|
|
||
|
if codevector_dim % self.num_groups != 0:
|
||
|
raise ValueError(
|
||
|
f"`config.codevector_dim {config.codevector_dim} must be divisible "
|
||
|
f"by `config.num_codevector_groups` {self.num_groups} for concatenation"
|
||
|
)
|
||
|
|
||
|
# storage for codebook variables (codewords)
|
||
|
self.codevectors = nn.Parameter(
|
||
|
torch.FloatTensor(1, self.num_groups * self.num_vars, codevector_dim // self.num_groups)
|
||
|
)
|
||
|
self.weight_proj = nn.Linear(proj_dim, self.num_groups * self.num_vars)
|
||
|
|
||
|
# can be decayed for training
|
||
|
self.temperature = 2
|
||
|
|
||
|
# Parameters init.
|
||
|
self.weight_proj.weight.data.normal_(mean=0.0, std=1)
|
||
|
self.weight_proj.bias.data.zero_()
|
||
|
nn.init.uniform_(self.codevectors)
|
||
|
|
||
|
@staticmethod
|
||
|
def _compute_perplexity(probs, mask=None):
|
||
|
if mask is not None:
|
||
|
mask_extended = mask.flatten()[:, None, None].expand(probs.shape)
|
||
|
probs = torch.where(mask_extended, probs, torch.zeros_like(probs))
|
||
|
marginal_probs = probs.sum(dim=0) / mask.sum()
|
||
|
else:
|
||
|
marginal_probs = probs.mean(dim=0)
|
||
|
|
||
|
perplexity = torch.exp(-torch.sum(marginal_probs * torch.log(marginal_probs + 1e-7), dim=-1)).sum()
|
||
|
return perplexity
|
||
|
|
||
|
def forward(self, hidden_states, mask_time_indices=None):
|
||
|
batch_size, sequence_length, hidden_size = hidden_states.shape
|
||
|
|
||
|
# project to codevector dim
|
||
|
hidden_states = self.weight_proj(hidden_states)
|
||
|
hidden_states = hidden_states.view(batch_size * sequence_length * self.num_groups, -1)
|
||
|
|
||
|
if self.training:
|
||
|
# sample code vector probs via gumbel in differentiateable way
|
||
|
codevector_probs = nn.functional.gumbel_softmax(
|
||
|
hidden_states.float(), tau=self.temperature, hard=True
|
||
|
).type_as(hidden_states)
|
||
|
|
||
|
# compute perplexity
|
||
|
codevector_soft_dist = torch.softmax(
|
||
|
hidden_states.view(batch_size * sequence_length, self.num_groups, -1).float(), dim=-1
|
||
|
)
|
||
|
perplexity = self._compute_perplexity(codevector_soft_dist, mask_time_indices)
|
||
|
else:
|
||
|
# take argmax in non-differentiable way
|
||
|
# comptute hard codevector distribution (one hot)
|
||
|
codevector_idx = hidden_states.argmax(dim=-1)
|
||
|
codevector_probs = hidden_states.new_zeros(*hidden_states.shape).scatter_(
|
||
|
-1, codevector_idx.view(-1, 1), 1.0
|
||
|
)
|
||
|
codevector_probs = codevector_probs.view(batch_size * sequence_length, self.num_groups, -1)
|
||
|
|
||
|
perplexity = self._compute_perplexity(codevector_probs, mask_time_indices)
|
||
|
|
||
|
codevector_probs = codevector_probs.view(batch_size * sequence_length, -1)
|
||
|
# use probs to retrieve codevectors
|
||
|
codevectors_per_group = codevector_probs.unsqueeze(-1) * self.codevectors
|
||
|
codevectors = (
|
||
|
codevectors_per_group.view(batch_size * sequence_length, self.num_groups, self.num_vars, -1)
|
||
|
.sum(-2)
|
||
|
.view(batch_size, sequence_length, -1)
|
||
|
)
|
||
|
|
||
|
return codevectors, perplexity
|
||
|
|
||
|
|
||
|
class ContrastiveTrainingWrapper(nn.Module):
|
||
|
def __init__(self, **kwargs):
|
||
|
super().__init__()
|
||
|
self.m2v = Mel2Vec(**kwargs)
|
||
|
self.dropout_features = nn.Dropout(kwargs['dropout'])
|
||
|
|
||
|
self.quantizer = Wav2Vec2GumbelVectorQuantizer(kwargs['inner_dim'])
|
||
|
|
||
|
# make sure that project_hid & project_q are initialized like normal linear layers
|
||
|
self.project_hid = nn.Linear(kwargs['inner_dim'], self.quantizer.codevector_dim)
|
||
|
self.project_q = nn.Linear(self.quantizer.codevector_dim, self.quantizer.codevector_dim)
|
||
|
|
||
|
def forward(self, mel):
|
||
|
pass
|