2020-11-20 04:42:39 +00:00
|
|
|
import torch
|
|
|
|
from torch import nn as nn
|
|
|
|
|
2020-11-20 06:47:24 +00:00
|
|
|
from models.archs.srflow_orig import thops
|
2020-11-20 04:42:39 +00:00
|
|
|
|
|
|
|
|
|
|
|
class _ActNorm(nn.Module):
|
|
|
|
"""
|
|
|
|
Activation Normalization
|
|
|
|
Initialize the bias and scale with a given minibatch,
|
|
|
|
so that the output per-channel have zero mean and unit variance for that.
|
|
|
|
|
|
|
|
After initialization, `bias` and `logs` will be trained as parameters.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, num_features, scale=1.):
|
|
|
|
super().__init__()
|
|
|
|
# register mean and scale
|
|
|
|
size = [1, num_features, 1, 1]
|
|
|
|
self.register_parameter("bias", nn.Parameter(torch.zeros(*size)))
|
|
|
|
self.register_parameter("logs", nn.Parameter(torch.zeros(*size)))
|
|
|
|
self.num_features = num_features
|
|
|
|
self.scale = float(scale)
|
|
|
|
self.inited = False
|
|
|
|
|
|
|
|
def _check_input_dim(self, input):
|
|
|
|
return NotImplemented
|
|
|
|
|
|
|
|
def initialize_parameters(self, input):
|
|
|
|
self._check_input_dim(input)
|
|
|
|
if not self.training:
|
|
|
|
return
|
|
|
|
if (self.bias != 0).any():
|
|
|
|
self.inited = True
|
|
|
|
return
|
|
|
|
assert input.device == self.bias.device, (input.device, self.bias.device)
|
|
|
|
with torch.no_grad():
|
|
|
|
bias = thops.mean(input.clone(), dim=[0, 2, 3], keepdim=True) * -1.0
|
|
|
|
vars = thops.mean((input.clone() + bias) ** 2, dim=[0, 2, 3], keepdim=True)
|
|
|
|
logs = torch.log(self.scale / (torch.sqrt(vars) + 1e-6))
|
|
|
|
self.bias.data.copy_(bias.data)
|
|
|
|
self.logs.data.copy_(logs.data)
|
|
|
|
self.inited = True
|
|
|
|
|
|
|
|
def _center(self, input, reverse=False, offset=None):
|
|
|
|
bias = self.bias
|
|
|
|
|
|
|
|
if offset is not None:
|
|
|
|
bias = bias + offset
|
|
|
|
|
|
|
|
if not reverse:
|
|
|
|
return input + bias
|
|
|
|
else:
|
|
|
|
return input - bias
|
|
|
|
|
|
|
|
def _scale(self, input, logdet=None, reverse=False, offset=None):
|
|
|
|
logs = self.logs
|
|
|
|
|
|
|
|
if offset is not None:
|
|
|
|
logs = logs + offset
|
|
|
|
|
|
|
|
if not reverse:
|
|
|
|
input = input * torch.exp(logs) # should have shape batchsize, n_channels, 1, 1
|
|
|
|
# input = input * torch.exp(logs+logs_offset)
|
|
|
|
else:
|
|
|
|
input = input * torch.exp(-logs)
|
|
|
|
if logdet is not None:
|
|
|
|
"""
|
|
|
|
logs is log_std of `mean of channels`
|
|
|
|
so we need to multiply pixels
|
|
|
|
"""
|
|
|
|
dlogdet = thops.sum(logs) * thops.pixels(input)
|
|
|
|
if reverse:
|
|
|
|
dlogdet *= -1
|
|
|
|
logdet = logdet + dlogdet
|
|
|
|
return input, logdet
|
|
|
|
|
|
|
|
def forward(self, input, logdet=None, reverse=False, offset_mask=None, logs_offset=None, bias_offset=None):
|
|
|
|
if not self.inited:
|
|
|
|
self.initialize_parameters(input)
|
|
|
|
self._check_input_dim(input)
|
|
|
|
|
|
|
|
if offset_mask is not None:
|
|
|
|
logs_offset *= offset_mask
|
|
|
|
bias_offset *= offset_mask
|
|
|
|
# no need to permute dims as old version
|
|
|
|
if not reverse:
|
|
|
|
# center and scale
|
|
|
|
|
|
|
|
# self.input = input
|
|
|
|
input = self._center(input, reverse, bias_offset)
|
|
|
|
input, logdet = self._scale(input, logdet, reverse, logs_offset)
|
|
|
|
else:
|
|
|
|
# scale and center
|
|
|
|
input, logdet = self._scale(input, logdet, reverse, logs_offset)
|
|
|
|
input = self._center(input, reverse, bias_offset)
|
|
|
|
return input, logdet
|
|
|
|
|
|
|
|
|
|
|
|
class ActNorm2d(_ActNorm):
|
|
|
|
def __init__(self, num_features, scale=1.):
|
|
|
|
super().__init__(num_features, scale)
|
|
|
|
|
|
|
|
def _check_input_dim(self, input):
|
|
|
|
assert len(input.size()) == 4
|
|
|
|
assert input.size(1) == self.num_features, (
|
|
|
|
"[ActNorm]: input should be in shape as `BCHW`,"
|
|
|
|
" channels should be {} rather than {}".format(
|
|
|
|
self.num_features, input.size()))
|
|
|
|
|
|
|
|
|
|
|
|
class MaskedActNorm2d(ActNorm2d):
|
|
|
|
def __init__(self, num_features, scale=1.):
|
|
|
|
super().__init__(num_features, scale)
|
|
|
|
|
|
|
|
def forward(self, input, mask, logdet=None, reverse=False):
|
|
|
|
|
|
|
|
assert mask.dtype == torch.bool
|
|
|
|
output, logdet_out = super().forward(input, logdet, reverse)
|
|
|
|
|
|
|
|
input[mask] = output[mask]
|
|
|
|
logdet[mask] = logdet_out[mask]
|
|
|
|
|
|
|
|
return input, logdet
|
|
|
|
|