DL-Art-School/codes/scripts/audio/gen/use_discrete_vocoder.py

55 lines
2.8 KiB
Python
Raw Normal View History

import argparse
2022-05-16 03:50:54 +00:00
import torch
import torchaudio
from data.audio.unsupervised_audio_dataset import load_audio
2021-12-17 03:47:37 +00:00
from scripts.audio.gen.speech_synthesis_utils import do_spectrogram_diffusion, \
2022-05-16 03:50:54 +00:00
load_discrete_vocoder_diffuser, wav_to_mel, convert_mel_to_codes, wav_to_univnet_mel, load_univnet_vocoder
from trainer.injectors.audio_injectors import denormalize_mel
from utils.audio import plot_spectrogram
from utils.util import load_model_from_config
def roundtrip_vocoding(dvae, vocoder, diffuser, clip, cond=None, plot_spec=False):
clip = clip.unsqueeze(0)
if cond is None:
cond = clip
else:
cond = cond.unsqueeze(0)
mel = wav_to_mel(clip)
if plot_spec:
plot_spectrogram(mel[0].cpu())
codes = convert_mel_to_codes(dvae, mel)
2022-01-20 18:28:50 +00:00
return do_spectrogram_diffusion(vocoder, dvae, diffuser, codes, cond, spectrogram_compression_factor=256, plt_spec=plot_spec)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
2022-05-16 03:50:54 +00:00
parser.add_argument('-codes_file', type=str, help='Which discretes to decode. Should be a path to a pytorch pickle that simply contains the codes.')
parser.add_argument('-cond_file', type=str, help='Path to the input audio file.')
2022-01-20 18:28:50 +00:00
parser.add_argument('-opt', type=str, help='Path to options YAML file used to train the diffusion model',
2022-05-16 03:50:54 +00:00
default='X:\\dlas\\experiments\\train_diffusion_tts_mel_flat0\\last_train.yml')
parser.add_argument('-diffusion_model_name', type=str, help='Name of the diffusion model in opt.', default='generator')
2022-05-16 03:50:54 +00:00
parser.add_argument('-diffusion_model_path', type=str, help='Diffusion model checkpoint to load.', default='X:\\dlas\\experiments\\train_diffusion_tts_mel_flat0\\models\\114000_generator_ema.pth')
args = parser.parse_args()
print("Loading data..")
2022-05-16 03:50:54 +00:00
codes = torch.load(args.codes_file)
conds = load_audio(args.cond_file, 24000)
conds = conds[:,:102400]
cond_mel = wav_to_univnet_mel(conds.to('cuda'), do_normalization=False)
output_shape = (1,100,codes.shape[-1]*4)
print("Loading Diffusion Model..")
diffusion = load_model_from_config(args.opt, args.diffusion_model_name, also_load_savepoint=False, load_path=args.diffusion_model_path, strict_load=False).cuda().eval()
diffuser = load_discrete_vocoder_diffuser(desired_diffusion_steps=50, schedule='linear', enable_conditioning_free_guidance=True, conditioning_free_k=1)
vocoder = load_univnet_vocoder().cuda()
with torch.no_grad():
print("Performing inference..")
for i in range(codes.shape[0]):
gen_mel = diffuser.p_sample_loop(diffusion, output_shape, model_kwargs={'aligned_conditioning': codes[i].unsqueeze(0), 'conditioning_input': cond_mel})
gen_mel = denormalize_mel(gen_mel)
genWav = vocoder.inference(gen_mel)
torchaudio.save(f'vocoded_{i}.wav', genWav.cpu().squeeze(0), 24000)