181 lines
5.6 KiB
Python
181 lines
5.6 KiB
Python
|
import torch
|
||
|
from kornia import filter2D
|
||
|
from torch import nn
|
||
|
from torch.nn import functional as F
|
||
|
|
||
|
import torch.distributed as distributed
|
||
|
|
||
|
from models.vqvae.vqvae import ResBlock, Quantize
|
||
|
from trainer.networks import register_model
|
||
|
from utils.util import checkpoint, opt_get
|
||
|
|
||
|
|
||
|
# Upsamples and blurs (similar to StyleGAN). Replaces ConvTranspose2D from the original paper.
|
||
|
class UpsampleConv(nn.Module):
|
||
|
def __init__(self, in_filters, out_filters, kernel_size, padding):
|
||
|
super().__init__()
|
||
|
self.conv = nn.Conv2d(in_filters, out_filters, kernel_size, padding=padding)
|
||
|
|
||
|
def forward(self, x):
|
||
|
up = torch.nn.functional.interpolate(x, scale_factor=2)
|
||
|
return self.conv(up)
|
||
|
|
||
|
|
||
|
class Encoder(nn.Module):
|
||
|
def __init__(self, in_channel, channel, n_res_block, n_res_channel, stride):
|
||
|
super().__init__()
|
||
|
|
||
|
if stride == 4:
|
||
|
blocks = [
|
||
|
nn.Conv2d(in_channel, channel // 2, 5, stride=2, padding=2),
|
||
|
nn.LeakyReLU(inplace=True),
|
||
|
nn.Conv2d(channel // 2, channel, 5, stride=2, padding=2),
|
||
|
nn.LeakyReLU(inplace=True),
|
||
|
nn.Conv2d(channel, channel, 3, padding=1),
|
||
|
]
|
||
|
|
||
|
elif stride == 2:
|
||
|
blocks = [
|
||
|
nn.Conv2d(in_channel, channel // 2, 5, stride=2, padding=2),
|
||
|
nn.LeakyReLU(inplace=True),
|
||
|
nn.Conv2d(channel // 2, channel, 3, padding=1),
|
||
|
]
|
||
|
|
||
|
for i in range(n_res_block):
|
||
|
blocks.append(ResBlock(channel, n_res_channel))
|
||
|
|
||
|
blocks.append(nn.LeakyReLU(inplace=True))
|
||
|
|
||
|
self.blocks = nn.Sequential(*blocks)
|
||
|
|
||
|
def forward(self, input):
|
||
|
return self.blocks(input)
|
||
|
|
||
|
|
||
|
class Decoder(nn.Module):
|
||
|
def __init__(
|
||
|
self, in_channel, out_channel, channel, n_res_block, n_res_channel, stride
|
||
|
):
|
||
|
super().__init__()
|
||
|
|
||
|
blocks = [nn.Conv2d(in_channel, channel, 3, padding=1)]
|
||
|
|
||
|
for i in range(n_res_block):
|
||
|
blocks.append(ResBlock(channel, n_res_channel))
|
||
|
|
||
|
blocks.append(nn.LeakyReLU(inplace=True))
|
||
|
|
||
|
if stride == 4:
|
||
|
blocks.extend(
|
||
|
[
|
||
|
UpsampleConv(channel, channel // 2, 5, padding=2),
|
||
|
nn.LeakyReLU(inplace=True),
|
||
|
UpsampleConv(
|
||
|
channel // 2, out_channel, 5, padding=2
|
||
|
),
|
||
|
]
|
||
|
)
|
||
|
|
||
|
elif stride == 2:
|
||
|
blocks.append(
|
||
|
UpsampleConv(channel, out_channel, 5, padding=2)
|
||
|
)
|
||
|
|
||
|
self.blocks = nn.Sequential(*blocks)
|
||
|
|
||
|
def forward(self, input):
|
||
|
return self.blocks(input)
|
||
|
|
||
|
|
||
|
class VQVAE3(nn.Module):
|
||
|
def __init__(
|
||
|
self,
|
||
|
in_channel=3,
|
||
|
channel=128,
|
||
|
n_res_block=2,
|
||
|
n_res_channel=32,
|
||
|
codebook_dim=64,
|
||
|
codebook_size=512,
|
||
|
decay=0.99,
|
||
|
):
|
||
|
super().__init__()
|
||
|
|
||
|
self.initial_conv = nn.Sequential(*[nn.Conv2d(in_channel, 32, 3, padding=1),
|
||
|
nn.LeakyReLU(inplace=True)])
|
||
|
self.enc_b = Encoder(32, channel, n_res_block, n_res_channel, stride=4)
|
||
|
self.enc_t = Encoder(channel, channel, n_res_block, n_res_channel, stride=2)
|
||
|
self.quantize_conv_t = nn.Conv2d(channel, codebook_dim, 1)
|
||
|
self.quantize_t = Quantize(codebook_dim, codebook_size)
|
||
|
self.dec_t = Decoder(
|
||
|
codebook_dim, codebook_dim, channel, n_res_block, n_res_channel, stride=2
|
||
|
)
|
||
|
self.quantize_conv_b = nn.Conv2d(codebook_dim + channel, codebook_dim, 1)
|
||
|
self.quantize_b = Quantize(codebook_dim, codebook_size)
|
||
|
self.upsample_t = UpsampleConv(
|
||
|
codebook_dim, codebook_dim, 5, padding=2
|
||
|
)
|
||
|
self.dec = Decoder(
|
||
|
codebook_dim + codebook_dim,
|
||
|
32,
|
||
|
channel,
|
||
|
n_res_block,
|
||
|
n_res_channel,
|
||
|
stride=4,
|
||
|
)
|
||
|
self.final_conv = nn.Conv2d(32, in_channel, 3, padding=1)
|
||
|
|
||
|
def forward(self, input):
|
||
|
quant_t, quant_b, diff, _, _ = self.encode(input)
|
||
|
dec = self.decode(quant_t, quant_b)
|
||
|
|
||
|
return dec, diff
|
||
|
|
||
|
def encode(self, input):
|
||
|
fea = self.initial_conv(input)
|
||
|
enc_b = checkpoint(self.enc_b, fea)
|
||
|
enc_t = checkpoint(self.enc_t, enc_b)
|
||
|
|
||
|
quant_t = self.quantize_conv_t(enc_t).permute(0, 2, 3, 1)
|
||
|
quant_t, diff_t, id_t = self.quantize_t(quant_t)
|
||
|
quant_t = quant_t.permute(0, 3, 1, 2)
|
||
|
diff_t = diff_t.unsqueeze(0)
|
||
|
|
||
|
dec_t = checkpoint(self.dec_t, quant_t)
|
||
|
enc_b = torch.cat([dec_t, enc_b], 1)
|
||
|
|
||
|
quant_b = checkpoint(self.quantize_conv_b, enc_b).permute(0, 2, 3, 1)
|
||
|
quant_b, diff_b, id_b = self.quantize_b(quant_b)
|
||
|
quant_b = quant_b.permute(0, 3, 1, 2)
|
||
|
diff_b = diff_b.unsqueeze(0)
|
||
|
|
||
|
return quant_t, quant_b, diff_t + diff_b, id_t, id_b
|
||
|
|
||
|
def decode(self, quant_t, quant_b):
|
||
|
upsample_t = self.upsample_t(quant_t)
|
||
|
quant = torch.cat([upsample_t, quant_b], 1)
|
||
|
dec = checkpoint(self.dec, quant)
|
||
|
dec = checkpoint(self.final_conv, dec)
|
||
|
|
||
|
return dec
|
||
|
|
||
|
def decode_code(self, code_t, code_b):
|
||
|
quant_t = self.quantize_t.embed_code(code_t)
|
||
|
quant_t = quant_t.permute(0, 3, 1, 2)
|
||
|
quant_b = self.quantize_b.embed_code(code_b)
|
||
|
quant_b = quant_b.permute(0, 3, 1, 2)
|
||
|
|
||
|
dec = self.decode(quant_t, quant_b)
|
||
|
|
||
|
return dec
|
||
|
|
||
|
|
||
|
@register_model
|
||
|
def register_vqvae3(opt_net, opt):
|
||
|
kw = opt_get(opt_net, ['kwargs'], {})
|
||
|
return VQVAE3(**kw)
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
v = VQVAE3()
|
||
|
print(v(torch.randn(1,3,128,128))[0].shape)
|