DL-Art-School/codes/models/optical_flow/PWCNet.py

325 lines
12 KiB
Python
Raw Normal View History

2021-01-25 15:25:44 +00:00
"""
implementation of the PWC-DC network for optical flow estimation by Sun et al., 2018
Jinwei Gu and Zhile Ren
"""
import torch
import torch.nn as nn
from torch.autograd import Variable
import os
#from spatial_correlation_sampler import spatial_correlation_sample
import numpy as np
__all__ = [
'pwc_dc_net', 'pwc_dc_net_old'
]
from models.flownet2.networks.correlation_package.correlation import CorrelationFunction, Correlation
from models.flownet2.networks.resample2d_package.resample2d import Resample2d
from trainer.networks import register_model
def conv(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1):
return nn.Sequential(
nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride,
padding=padding, dilation=dilation, bias=True),
nn.LeakyReLU(0.1))
def predict_flow(in_planes):
return nn.Conv2d(in_planes,2,kernel_size=3,stride=1,padding=1,bias=True)
def deconv(in_planes, out_planes, kernel_size=4, stride=2, padding=1):
return nn.ConvTranspose2d(in_planes, out_planes, kernel_size, stride, padding, bias=True)
class PWCDCNet(nn.Module):
"""
PWC-DC net. add dilation convolution and densenet connections
"""
def __init__(self, md=4, pretrained=False):
"""
input: md --- maximum displacement (for correlation. default: 4), after warpping
"""
super(PWCDCNet,self).__init__()
self.upsample = nn.Upsample(scale_factor=4, mode='bilinear')
self.conv1a = conv(3, 16, kernel_size=3, stride=2)
self.conv1aa = conv(16, 16, kernel_size=3, stride=1)
self.conv1b = conv(16, 16, kernel_size=3, stride=1)
self.conv2a = conv(16, 32, kernel_size=3, stride=2)
self.conv2aa = conv(32, 32, kernel_size=3, stride=1)
self.conv2b = conv(32, 32, kernel_size=3, stride=1)
self.conv3a = conv(32, 64, kernel_size=3, stride=2)
self.conv3aa = conv(64, 64, kernel_size=3, stride=1)
self.conv3b = conv(64, 64, kernel_size=3, stride=1)
self.conv4a = conv(64, 96, kernel_size=3, stride=2)
self.conv4aa = conv(96, 96, kernel_size=3, stride=1)
self.conv4b = conv(96, 96, kernel_size=3, stride=1)
self.conv5a = conv(96, 128, kernel_size=3, stride=2)
self.conv5aa = conv(128,128, kernel_size=3, stride=1)
self.conv5b = conv(128,128, kernel_size=3, stride=1)
self.conv6aa = conv(128,196, kernel_size=3, stride=2)
self.conv6a = conv(196,196, kernel_size=3, stride=1)
self.conv6b = conv(196,196, kernel_size=3, stride=1)
#self.corr = Correlation(padding=md, kernel_size=1, patch_size=md, stride=1)
self.corr = Correlation(pad_size=md, kernel_size=1, max_displacement=md, stride1=1, stride2=1, corr_multiply=1)
self.leakyRELU = nn.LeakyReLU(0.1)
nd = (2*md+1)**2
dd = np.cumsum([128,128,96,64,32])
od = nd
self.conv6_0 = conv(od, 128, kernel_size=3, stride=1)
self.conv6_1 = conv(od+dd[0],128, kernel_size=3, stride=1)
self.conv6_2 = conv(od+dd[1],96, kernel_size=3, stride=1)
self.conv6_3 = conv(od+dd[2],64, kernel_size=3, stride=1)
self.conv6_4 = conv(od+dd[3],32, kernel_size=3, stride=1)
self.predict_flow6 = predict_flow(od+dd[4])
self.deconv6 = deconv(2, 2, kernel_size=4, stride=2, padding=1)
self.upfeat6 = deconv(od+dd[4], 2, kernel_size=4, stride=2, padding=1)
od = nd+128+4
self.conv5_0 = conv(od, 128, kernel_size=3, stride=1)
self.conv5_1 = conv(od+dd[0],128, kernel_size=3, stride=1)
self.conv5_2 = conv(od+dd[1],96, kernel_size=3, stride=1)
self.conv5_3 = conv(od+dd[2],64, kernel_size=3, stride=1)
self.conv5_4 = conv(od+dd[3],32, kernel_size=3, stride=1)
self.predict_flow5 = predict_flow(od+dd[4])
self.deconv5 = deconv(2, 2, kernel_size=4, stride=2, padding=1)
self.upfeat5 = deconv(od+dd[4], 2, kernel_size=4, stride=2, padding=1)
od = nd+96+4
self.conv4_0 = conv(od, 128, kernel_size=3, stride=1)
self.conv4_1 = conv(od+dd[0],128, kernel_size=3, stride=1)
self.conv4_2 = conv(od+dd[1],96, kernel_size=3, stride=1)
self.conv4_3 = conv(od+dd[2],64, kernel_size=3, stride=1)
self.conv4_4 = conv(od+dd[3],32, kernel_size=3, stride=1)
self.predict_flow4 = predict_flow(od+dd[4])
self.deconv4 = deconv(2, 2, kernel_size=4, stride=2, padding=1)
self.upfeat4 = deconv(od+dd[4], 2, kernel_size=4, stride=2, padding=1)
od = nd+64+4
self.conv3_0 = conv(od, 128, kernel_size=3, stride=1)
self.conv3_1 = conv(od+dd[0],128, kernel_size=3, stride=1)
self.conv3_2 = conv(od+dd[1],96, kernel_size=3, stride=1)
self.conv3_3 = conv(od+dd[2],64, kernel_size=3, stride=1)
self.conv3_4 = conv(od+dd[3],32, kernel_size=3, stride=1)
self.predict_flow3 = predict_flow(od+dd[4])
self.deconv3 = deconv(2, 2, kernel_size=4, stride=2, padding=1)
self.upfeat3 = deconv(od+dd[4], 2, kernel_size=4, stride=2, padding=1)
od = nd+32+4
self.conv2_0 = conv(od, 128, kernel_size=3, stride=1)
self.conv2_1 = conv(od+dd[0],128, kernel_size=3, stride=1)
self.conv2_2 = conv(od+dd[1],96, kernel_size=3, stride=1)
self.conv2_3 = conv(od+dd[2],64, kernel_size=3, stride=1)
self.conv2_4 = conv(od+dd[3],32, kernel_size=3, stride=1)
self.predict_flow2 = predict_flow(od+dd[4])
self.deconv2 = deconv(2, 2, kernel_size=4, stride=2, padding=1)
self.dc_conv1 = conv(od+dd[4], 128, kernel_size=3, stride=1, padding=1, dilation=1)
self.dc_conv2 = conv(128, 128, kernel_size=3, stride=1, padding=2, dilation=2)
self.dc_conv3 = conv(128, 128, kernel_size=3, stride=1, padding=4, dilation=4)
self.dc_conv4 = conv(128, 96, kernel_size=3, stride=1, padding=8, dilation=8)
self.dc_conv5 = conv(96, 64, kernel_size=3, stride=1, padding=16, dilation=16)
self.dc_conv6 = conv(64, 32, kernel_size=3, stride=1, padding=1, dilation=1)
self.dc_conv7 = predict_flow(32)
for m in self.modules():
if isinstance(m, nn.Conv2d) or isinstance(m, nn.ConvTranspose2d):
nn.init.kaiming_normal(m.weight.data, mode='fan_in')
if m.bias is not None:
m.bias.data.zero_()
if pretrained:
self.load_state_dict('models/pwc_net_chairs.pth.tar')
def warp(self, x, flo):
"""
warp an image/tensor (im2) back to im1, according to the optical flow
x: [B, C, H, W] (im2)
flo: [B, 2, H, W] flow
"""
return Resample2d()(x, flo)
'''
B, C, H, W = x.size()
# mesh grid
xx = torch.arange(0, W).view(1,-1).repeat(H,1)
yy = torch.arange(0, H).view(-1,1).repeat(1,W)
xx = xx.view(1,1,H,W).repeat(B,1,1,1)
yy = yy.view(1,1,H,W).repeat(B,1,1,1)
grid = torch.cat((xx,yy),1).float()
if x.is_cuda:
grid = grid.cuda()
vgrid = Variable(grid) + flo
# scale grid to [-1,1]
vgrid[:,0,:,:] = 2.0*vgrid[:,0,:,:]/max(W-1,1)-1.0
vgrid[:,1,:,:] = 2.0*vgrid[:,1,:,:]/max(H-1,1)-1.0
vgrid = vgrid.permute(0,2,3,1)
output = nn.functional.grid_sample(x, vgrid)
mask = torch.autograd.Variable(torch.ones(x.size())).cuda()
mask = nn.functional.grid_sample(mask, vgrid)
# if W==128:
# np.save('mask.npy', mask.cpu().data.numpy())
# np.save('warp.npy', output.cpu().data.numpy())
mask[mask<0.9999] = 0
mask[mask>0] = 1
return output*mask'''
def weight_parameters(self):
return [param for name, param in self.named_parameters() if 'weight' in name]
def bias_parameters(self):
return [param for name, param in self.named_parameters() if 'bias' in name]
def forward(self, x):
im1 = x[:,:3,:,:]
im2 = x[:,3:,:,:]
c11 = self.conv1b(self.conv1aa(self.conv1a(im1)))
c21 = self.conv1b(self.conv1aa(self.conv1a(im2)))
c12 = self.conv2b(self.conv2aa(self.conv2a(c11)))
c22 = self.conv2b(self.conv2aa(self.conv2a(c21)))
c13 = self.conv3b(self.conv3aa(self.conv3a(c12)))
c23 = self.conv3b(self.conv3aa(self.conv3a(c22)))
c14 = self.conv4b(self.conv4aa(self.conv4a(c13)))
c24 = self.conv4b(self.conv4aa(self.conv4a(c23)))
c15 = self.conv5b(self.conv5aa(self.conv5a(c14)))
c25 = self.conv5b(self.conv5aa(self.conv5a(c24)))
c16 = self.conv6b(self.conv6a(self.conv6aa(c15)))
c26 = self.conv6b(self.conv6a(self.conv6aa(c25)))
corr6 = self.corr(c16, c26)
corr6 = self.leakyRELU(corr6)
x = torch.cat((self.conv6_0(corr6), corr6),1)
x = torch.cat((self.conv6_1(x), x),1)
x = torch.cat((self.conv6_2(x), x),1)
x = torch.cat((self.conv6_3(x), x),1)
x = torch.cat((self.conv6_4(x), x),1)
flow6 = self.predict_flow6(x)
up_flow6 = self.deconv6(flow6)
up_feat6 = self.upfeat6(x)
warp5 = self.warp(c25, up_flow6*0.625)
corr5 = self.corr(c15, warp5)
corr5 = self.leakyRELU(corr5)
x = torch.cat((corr5, c15, up_flow6, up_feat6), 1)
x = torch.cat((self.conv5_0(x), x),1)
x = torch.cat((self.conv5_1(x), x),1)
x = torch.cat((self.conv5_2(x), x),1)
x = torch.cat((self.conv5_3(x), x),1)
x = torch.cat((self.conv5_4(x), x),1)
flow5 = self.predict_flow5(x)
up_flow5 = self.deconv5(flow5)
up_feat5 = self.upfeat5(x)
warp4 = self.warp(c24, up_flow5*1.25)
corr4 = self.corr(c14, warp4)
corr4 = self.leakyRELU(corr4)
x = torch.cat((corr4, c14, up_flow5, up_feat5), 1)
x = torch.cat((self.conv4_0(x), x),1)
x = torch.cat((self.conv4_1(x), x),1)
x = torch.cat((self.conv4_2(x), x),1)
x = torch.cat((self.conv4_3(x), x),1)
x = torch.cat((self.conv4_4(x), x),1)
flow4 = self.predict_flow4(x)
up_flow4 = self.deconv4(flow4)
up_feat4 = self.upfeat4(x)
warp3 = self.warp(c23, up_flow4*2.5)
corr3 = self.corr(c13, warp3)
corr3 = self.leakyRELU(corr3)
x = torch.cat((corr3, c13, up_flow4, up_feat4), 1)
x = torch.cat((self.conv3_0(x), x),1)
x = torch.cat((self.conv3_1(x), x),1)
x = torch.cat((self.conv3_2(x), x),1)
x = torch.cat((self.conv3_3(x), x),1)
x = torch.cat((self.conv3_4(x), x),1)
flow3 = self.predict_flow3(x)
up_flow3 = self.deconv3(flow3)
up_feat3 = self.upfeat3(x)
warp2 = self.warp(c22, up_flow3*5.0)
corr2 = self.corr(c12, warp2)
corr2 = self.leakyRELU(corr2)
x = torch.cat((corr2, c12, up_flow3, up_feat3), 1)
x = torch.cat((self.conv2_0(x), x),1)
x = torch.cat((self.conv2_1(x), x),1)
x = torch.cat((self.conv2_2(x), x),1)
x = torch.cat((self.conv2_3(x), x),1)
x = torch.cat((self.conv2_4(x), x),1)
flow2 = self.predict_flow2(x)
x = self.dc_conv4(self.dc_conv3(self.dc_conv2(self.dc_conv1(x))))
flow2 += self.dc_conv7(self.dc_conv6(self.dc_conv5(x)))
# flow2 = 20*4*self.upsample(flow2)
# flow3 = 20*4*self.upsample(flow3)
# flow4 = 20*4*self.upsample(flow4)
# flow5 = 20*4*self.upsample(flow5)
# flow6 = 20*4*self.upsample(flow6)
if self.training:
return flow2,flow3,flow4,flow5,flow6
else:
return flow2
def pwc(data=None):
model = PWCDCNet()
if data is not None:
if 'state_dict' in data.keys():
model.load_state_dict(data['state_dict'])
else:
model.load_state_dict(data)
return model
def pwc_dc_net(path=None):
model = PWCDCNet()
if path is not None:
data = torch.load(path)
if 'state_dict' in data.keys():
model.load_state_dict(data['state_dict'])
else:
model.load_state_dict(data)
return model
@register_model
def register_pwc_humanflow(opt_net, opt):
return pwc_dc_net(opt_net['pretrained_path'])
if __name__ == '__main__':
pwc = pwc_dc_net('../../../experiments/pwc_humanflow.pth')
t = torch.randn(1,6,64,64)
out = pwc(t)
print(out.shape)