DL-Art-School/codes/models/vqvae/vqvae_3_hardswitch.py

266 lines
9.9 KiB
Python
Raw Normal View History

import os
from time import time
2021-02-03 04:00:04 +00:00
import torch
2021-02-03 06:50:25 +00:00
import torchvision
2021-02-05 15:42:11 +00:00
import torch.distributed as distributed
2021-02-03 04:00:04 +00:00
from torch import nn
from tqdm import tqdm
2021-02-03 04:00:04 +00:00
from models.switched_conv.switched_conv_hard_routing import SwitchedConvHardRouting, \
convert_conv_net_state_dict_to_switched_conv
from models.vqvae.vqvae import ResBlock, Quantize
from trainer.networks import register_model
from utils.util import checkpoint, opt_get
# Upsamples and blurs (similar to StyleGAN). Replaces ConvTranspose2D from the original paper.
class UpsampleConv(nn.Module):
2021-02-04 16:03:22 +00:00
def __init__(self, in_filters, out_filters, kernel_size, padding, cfg):
2021-02-03 04:00:04 +00:00
super().__init__()
2021-02-04 16:03:22 +00:00
self.conv = SwitchedConvHardRouting(in_filters, out_filters, kernel_size, breadth=cfg['breadth'], include_coupler=True,
coupler_mode=cfg['mode'], coupler_dim_in=in_filters, dropout_rate=cfg['dropout'], hard_en=cfg['hard_enabled'])
2021-02-03 04:00:04 +00:00
def forward(self, x):
up = torch.nn.functional.interpolate(x, scale_factor=2)
return self.conv(up)
class Encoder(nn.Module):
2021-02-04 16:03:22 +00:00
def __init__(self, in_channel, channel, n_res_block, n_res_channel, stride, cfg):
2021-02-03 04:00:04 +00:00
super().__init__()
if stride == 4:
blocks = [
nn.Conv2d(in_channel, channel // 2, 5, stride=2, padding=2),
nn.LeakyReLU(inplace=True),
2021-02-04 16:03:22 +00:00
SwitchedConvHardRouting(channel // 2, channel, 5, breadth=cfg['breadth'], stride=2, include_coupler=True,
coupler_mode=cfg['mode'], coupler_dim_in=channel // 2, dropout_rate=cfg['dropout'], hard_en=cfg['hard_enabled']),
2021-02-03 04:00:04 +00:00
nn.LeakyReLU(inplace=True),
2021-02-04 16:03:22 +00:00
SwitchedConvHardRouting(channel, channel, 3, breadth=cfg['breadth'], include_coupler=True, coupler_mode=cfg['mode'],
coupler_dim_in=channel, dropout_rate=cfg['dropout'], hard_en=cfg['hard_enabled']),
2021-02-03 04:00:04 +00:00
]
elif stride == 2:
blocks = [
nn.Conv2d(in_channel, channel // 2, 5, stride=2, padding=2),
nn.LeakyReLU(inplace=True),
2021-02-04 16:03:22 +00:00
SwitchedConvHardRouting(channel // 2, channel, 3, breadth=cfg['breadth'], include_coupler=True, coupler_mode=cfg['mode'],
coupler_dim_in=channel // 2, dropout_rate=cfg['dropout'], hard_en=cfg['hard_enabled']),
2021-02-03 04:00:04 +00:00
]
for i in range(n_res_block):
blocks.append(ResBlock(channel, n_res_channel))
blocks.append(nn.LeakyReLU(inplace=True))
self.blocks = nn.Sequential(*blocks)
def forward(self, input):
return self.blocks(input)
class Decoder(nn.Module):
def __init__(
2021-02-04 16:03:22 +00:00
self, in_channel, out_channel, channel, n_res_block, n_res_channel, stride, cfg
2021-02-03 04:00:04 +00:00
):
super().__init__()
2021-02-04 16:03:22 +00:00
blocks = [SwitchedConvHardRouting(in_channel, channel, 3, breadth=cfg['breadth'], include_coupler=True, coupler_mode=cfg['mode'],
coupler_dim_in=in_channel, dropout_rate=cfg['dropout'], hard_en=cfg['hard_enabled'])]
2021-02-03 04:00:04 +00:00
for i in range(n_res_block):
blocks.append(ResBlock(channel, n_res_channel))
blocks.append(nn.LeakyReLU(inplace=True))
if stride == 4:
blocks.extend(
[
2021-02-04 16:03:22 +00:00
UpsampleConv(channel, channel // 2, 5, padding=2, cfg=cfg),
2021-02-03 04:00:04 +00:00
nn.LeakyReLU(inplace=True),
UpsampleConv(
2021-02-04 16:03:22 +00:00
channel // 2, out_channel, 5, padding=2, cfg=cfg
2021-02-03 04:00:04 +00:00
),
]
)
elif stride == 2:
blocks.append(
2021-02-04 16:03:22 +00:00
UpsampleConv(channel, out_channel, 5, padding=2, cfg=cfg)
2021-02-03 04:00:04 +00:00
)
self.blocks = nn.Sequential(*blocks)
def forward(self, input):
return self.blocks(input)
class VQVAE3HardSwitch(nn.Module):
def __init__(
self,
in_channel=3,
channel=128,
n_res_block=2,
n_res_channel=32,
codebook_dim=64,
codebook_size=512,
decay=0.99,
2021-02-04 16:03:22 +00:00
cfg={'mode':'standard', 'breadth':16, 'hard_enabled': True, 'dropout': 0.4}
2021-02-03 04:00:04 +00:00
):
super().__init__()
2021-02-04 16:03:22 +00:00
self.cfg = cfg
2021-02-03 04:00:04 +00:00
self.initial_conv = nn.Sequential(*[nn.Conv2d(in_channel, 32, 3, padding=1),
nn.LeakyReLU(inplace=True)])
2021-02-04 16:03:22 +00:00
self.enc_b = Encoder(32, channel, n_res_block, n_res_channel, stride=4, cfg=cfg)
self.enc_t = Encoder(channel, channel, n_res_block, n_res_channel, stride=2, cfg=cfg)
2021-02-03 04:00:04 +00:00
self.quantize_conv_t = nn.Conv2d(channel, codebook_dim, 1)
self.quantize_t = Quantize(codebook_dim, codebook_size)
self.dec_t = Decoder(
2021-02-04 16:03:22 +00:00
codebook_dim, codebook_dim, channel, n_res_block, n_res_channel, stride=2, cfg=cfg
2021-02-03 04:00:04 +00:00
)
self.quantize_conv_b = nn.Conv2d(codebook_dim + channel, codebook_dim, 1)
self.quantize_b = Quantize(codebook_dim, codebook_size)
self.upsample_t = UpsampleConv(
2021-02-04 16:03:22 +00:00
codebook_dim, codebook_dim, 5, padding=2, cfg=cfg
2021-02-03 04:00:04 +00:00
)
self.dec = Decoder(
codebook_dim + codebook_dim,
32,
channel,
n_res_block,
n_res_channel,
stride=4,
2021-02-04 16:03:22 +00:00
cfg=cfg
2021-02-03 04:00:04 +00:00
)
self.final_conv = nn.Conv2d(32, in_channel, 3, padding=1)
def forward(self, input):
quant_t, quant_b, diff, _, _ = self.encode(input)
dec = self.decode(quant_t, quant_b)
return dec, diff
2021-02-03 06:50:01 +00:00
def save_attention_to_image_rgb(self, output_file, attention_out, attention_size, cmap_discrete_name='viridis'):
from matplotlib import cm
magnitude, indices = torch.topk(attention_out, 3, dim=1)
indices = indices.cpu()
colormap = cm.get_cmap(cmap_discrete_name, attention_size)
img = torch.tensor(colormap(indices[:, 0, :, :].detach().numpy())) # TODO: use other k's
img = img.permute((0, 3, 1, 2))
torchvision.utils.save_image(img, output_file)
def visual_dbg(self, step, path):
convs = [self.dec.blocks[-1].conv, self.dec_t.blocks[-1].conv, self.enc_b.blocks[-4], self.enc_t.blocks[-4]]
for i, c in enumerate(convs):
self.save_attention_to_image_rgb(os.path.join(path, "%i_selector_%i.png" % (step, i+1)), c.last_select, 16)
def get_debug_values(self, step, __):
switched_convs = [('enc_b_blk2', self.enc_b.blocks[2]),
('enc_b_blk4', self.enc_b.blocks[4]),
('enc_t_blk2', self.enc_t.blocks[2]),
('dec_t_blk0', self.dec_t.blocks[0]),
('dec_t_blk-1', self.dec_t.blocks[-1].conv),
('dec_blk0', self.dec.blocks[0]),
('dec_blk-1', self.dec.blocks[-1].conv),
('dec_blk-3', self.dec.blocks[-3].conv)]
logs = {}
for name, swc in switched_convs:
logs[f'{name}_histogram_switch_usage'] = swc.latest_masks
return logs
2021-02-03 06:50:01 +00:00
2021-02-03 04:00:04 +00:00
def encode(self, input):
fea = self.initial_conv(input)
enc_b = checkpoint(self.enc_b, fea)
enc_t = checkpoint(self.enc_t, enc_b)
quant_t = self.quantize_conv_t(enc_t).permute(0, 2, 3, 1)
quant_t, diff_t, id_t = self.quantize_t(quant_t)
quant_t = quant_t.permute(0, 3, 1, 2)
diff_t = diff_t.unsqueeze(0)
dec_t = checkpoint(self.dec_t, quant_t)
enc_b = torch.cat([dec_t, enc_b], 1)
quant_b = checkpoint(self.quantize_conv_b, enc_b).permute(0, 2, 3, 1)
quant_b, diff_b, id_b = self.quantize_b(quant_b)
quant_b = quant_b.permute(0, 3, 1, 2)
diff_b = diff_b.unsqueeze(0)
return quant_t, quant_b, diff_t + diff_b, id_t, id_b
def decode(self, quant_t, quant_b):
upsample_t = self.upsample_t(quant_t)
quant = torch.cat([upsample_t, quant_b], 1)
dec = checkpoint(self.dec, quant)
dec = checkpoint(self.final_conv, dec)
return dec
def decode_code(self, code_t, code_b):
quant_t = self.quantize_t.embed_code(code_t)
quant_t = quant_t.permute(0, 3, 1, 2)
quant_b = self.quantize_b.embed_code(code_b)
quant_b = quant_b.permute(0, 3, 1, 2)
dec = self.decode(quant_t, quant_b)
return dec
def convert_weights(weights_file):
sd = torch.load(weights_file)
from models.vqvae.vqvae_3 import VQVAE3
std_model = VQVAE3()
std_model.load_state_dict(sd)
nsd = convert_conv_net_state_dict_to_switched_conv(std_model, 16, ['quantize_conv_t', 'quantize_conv_b',
2021-02-03 04:00:04 +00:00
'enc_b.blocks.0', 'enc_t.blocks.0',
'conv.1', 'conv.3', 'initial_conv', 'final_conv'])
torch.save(nsd, "converted.pth")
@register_model
def register_vqvae3_hard_switch(opt_net, opt):
kw = opt_get(opt_net, ['kwargs'], {})
2021-02-05 05:26:36 +00:00
vq = VQVAE3HardSwitch(**kw)
if distributed.is_initialized() and distributed.get_world_size() > 1:
vq = torch.nn.SyncBatchNorm.convert_sync_batchnorm(vq)
return vq
2021-02-03 04:00:04 +00:00
def performance_test():
2021-02-08 15:09:41 +00:00
# For breadth=32:
# Custom_cuda_naive: 28.9s
# Torch_native: 29.2s
#
# For breadth=8
# Custom_cuda_naive: 18.4s
# Torch_native: 10s
2021-02-04 16:03:22 +00:00
cfg = {
2021-02-08 15:09:41 +00:00
'mode': 'lambda',
2021-02-05 05:26:36 +00:00
'breadth': 8,
'hard_enabled': True,
'dropout': 0.4
2021-02-04 16:03:22 +00:00
}
net = VQVAE3HardSwitch(cfg=cfg).to('cuda')
loss = nn.L1Loss()
opt = torch.optim.Adam(net.parameters(), lr=1e-4)
started = time()
for j in tqdm(range(10)):
inp = torch.rand((8, 3, 256, 256), device='cuda')
res = net(inp)[0]
l = loss(res, inp)
l.backward()
opt.step()
net.zero_grad()
print("Elapsed: ", (time()-started))
2021-02-03 04:00:04 +00:00
if __name__ == '__main__':
#v = VQVAE3HardSwitch()
#print(v(torch.randn(1,3,128,128))[0].shape)
#convert_weights("../../../experiments/vqvae_base.pth")
performance_test()