Get diffusion_dvae functional
This commit is contained in:
parent
e513052fca
commit
0382660159
|
@ -5,6 +5,7 @@ from models.diffusion.unet_diffusion import AttentionPool2d, AttentionBlock, Res
|
|||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from models.gpt_voice.mini_encoder import AudioMiniEncoder, EmbeddingCombiner
|
||||
from models.vqvae.vqvae import Quantize
|
||||
from trainer.networks import register_model
|
||||
import models.gpt_voice.my_dvae as mdvae
|
||||
|
@ -120,6 +121,9 @@ class DiffusionDVAE(nn.Module):
|
|||
nn.SiLU(),
|
||||
linear(time_embed_dim, time_embed_dim),
|
||||
)
|
||||
self.contextual_embedder = AudioMiniEncoder(self.spectrogram_channels, time_embed_dim)
|
||||
self.query_gen = AudioMiniEncoder(decoder_channels[0], time_embed_dim)
|
||||
self.embedding_combiner = EmbeddingCombiner(time_embed_dim)
|
||||
|
||||
self.input_blocks = nn.ModuleList(
|
||||
[
|
||||
|
@ -258,7 +262,7 @@ class DiffusionDVAE(nn.Module):
|
|||
self.middle_block.apply(convert_module_to_f32)
|
||||
self.output_blocks.apply(convert_module_to_f32)
|
||||
|
||||
def forward(self, x, timesteps, spectrogram):
|
||||
def forward(self, x, timesteps, spectrogram, conditioning_inputs=None):
|
||||
assert x.shape[-1] % 4096 == 0 # This model operates at base//4096 at it's bottom levels, thus this requirement.
|
||||
|
||||
# Compute DVAE portion first.
|
||||
|
@ -275,9 +279,17 @@ class DiffusionDVAE(nn.Module):
|
|||
spec_hs = [nn.functional.interpolate(sh, size=(x.shape[-1]//self.scale_steps**self.spectrogram_conditioning_levels[i],), mode='nearest') for i, sh in enumerate(spec_hs)]
|
||||
convergence_fns = list(self.convergence_convs)
|
||||
|
||||
# The rest is the diffusion vocoder, built as a standard U-net. spec_h is gradually fed into the encoder.
|
||||
# Timestep embeddings and conditioning signals are combined using a small transformer.
|
||||
hs = []
|
||||
emb = self.time_embed(timestep_embedding(timesteps, self.model_channels))
|
||||
emb1 = self.time_embed(timestep_embedding(timesteps, self.model_channels))
|
||||
if conditioning_inputs is not None:
|
||||
emb2 = torch.stack([self.contextual_embedder(ci.squeeze(1)) for ci in list(torch.chunk(conditioning_inputs, conditioning_inputs.shape[1], dim=1))], dim=1)
|
||||
emb = torch.cat([emb1.unsqueeze(1), emb2], dim=1)
|
||||
else:
|
||||
emb = emb1.unsqueeze(1)
|
||||
emb = self.embedding_combiner(emb, self.query_gen(spec_hs[0]))
|
||||
|
||||
# The rest is the diffusion vocoder, built as a standard U-net. spec_h is gradually fed into the encoder.
|
||||
next_spec = spec_hs.pop(0)
|
||||
next_convergence_fn = convergence_fns.pop(0)
|
||||
h = x.type(self.dtype)
|
||||
|
@ -311,6 +323,7 @@ def register_unet_diffusion_dvae(opt_net, opt):
|
|||
if __name__ == '__main__':
|
||||
clip = torch.randn(1, 1, 81920)
|
||||
spec = torch.randn(1, 80, 416)
|
||||
cond = torch.randn(1, 5, 80, 200)
|
||||
ts = torch.LongTensor([555])
|
||||
model = DiffusionDVAE(32, 2)
|
||||
print(model(clip, ts, spec).shape)
|
||||
print(model(clip, ts, spec, cond)[0].shape)
|
||||
|
|
122
codes/models/gpt_voice/mini_encoder.py
Normal file
122
codes/models/gpt_voice/mini_encoder.py
Normal file
|
@ -0,0 +1,122 @@
|
|||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
|
||||
from models.diffusion.nn import normalization, conv_nd, zero_module
|
||||
from models.diffusion.unet_diffusion import Downsample, AttentionBlock, QKVAttention, QKVAttentionLegacy
|
||||
from models.gpt_voice.my_dvae import ResBlock
|
||||
|
||||
|
||||
# Combined resnet & full-attention encoder for converting an audio clip into an embedding.
|
||||
from utils.util import checkpoint
|
||||
|
||||
|
||||
class AudioMiniEncoder(nn.Module):
|
||||
def __init__(self, spec_dim, embedding_dim, resnet_blocks=2, attn_blocks=4, num_attn_heads=4, dropout=0):
|
||||
super().__init__()
|
||||
self.init = nn.Sequential(
|
||||
conv_nd(1, spec_dim, 128, 3, padding=1)
|
||||
)
|
||||
ch = 128
|
||||
res = []
|
||||
for l in range(2):
|
||||
for r in range(resnet_blocks):
|
||||
res.append(ResBlock(ch, dropout, dims=1))
|
||||
res.append(Downsample(ch, use_conv=True, dims=1, out_channels=ch*2, factor=2))
|
||||
ch *= 2
|
||||
self.res = nn.Sequential(*res)
|
||||
self.final = nn.Sequential(
|
||||
normalization(ch),
|
||||
nn.SiLU(),
|
||||
conv_nd(1, ch, embedding_dim, 1)
|
||||
)
|
||||
attn = []
|
||||
for a in range(attn_blocks):
|
||||
attn.append(AttentionBlock(embedding_dim, num_attn_heads))
|
||||
self.attn = nn.Sequential(*attn)
|
||||
|
||||
def forward(self, x):
|
||||
h = self.init(x)
|
||||
h = self.res(h)
|
||||
h = self.final(h)
|
||||
h = self.attn(h)
|
||||
return h[:, :, 0]
|
||||
|
||||
|
||||
|
||||
|
||||
class QueryProvidedAttentionBlock(nn.Module):
|
||||
"""
|
||||
An attention block that provides a separate signal for the query vs the keys/parameters.
|
||||
"""
|
||||
def __init__(
|
||||
self,
|
||||
channels,
|
||||
num_heads=1,
|
||||
num_head_channels=-1,
|
||||
use_new_attention_order=False,
|
||||
):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
if num_head_channels == -1:
|
||||
self.num_heads = num_heads
|
||||
else:
|
||||
assert (
|
||||
channels % num_head_channels == 0
|
||||
), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
|
||||
self.num_heads = channels // num_head_channels
|
||||
self.norm = normalization(channels)
|
||||
self.q = nn.Linear(channels, channels)
|
||||
self.qnorm = nn.LayerNorm(channels)
|
||||
self.kv = conv_nd(1, channels, channels*2, 1)
|
||||
if use_new_attention_order:
|
||||
# split qkv before split heads
|
||||
self.attention = QKVAttention(self.num_heads)
|
||||
else:
|
||||
# split heads before split qkv
|
||||
self.attention = QKVAttentionLegacy(self.num_heads)
|
||||
|
||||
self.proj_out = zero_module(conv_nd(1, channels, channels, 1))
|
||||
|
||||
def forward(self, qx, kvx):
|
||||
return checkpoint(self._forward, qx, kvx)
|
||||
|
||||
def _forward(self, qx, kvx):
|
||||
q = self.q(self.qnorm(qx)).unsqueeze(1).repeat(1, kvx.shape[1], 1).permute(0,2,1)
|
||||
kv = self.kv(self.norm(kvx.permute(0,2,1)))
|
||||
qkv = torch.cat([q, kv], dim=1)
|
||||
h = self.attention(qkv)
|
||||
h = self.proj_out(h)
|
||||
return kvx + h.permute(0,2,1)
|
||||
|
||||
|
||||
# Next up: combine multiple embeddings given a conditioning signal into a single embedding.
|
||||
class EmbeddingCombiner(nn.Module):
|
||||
def __init__(self, embedding_dim, attn_blocks=3, num_attn_heads=2, cond_provided=True):
|
||||
super().__init__()
|
||||
block = QueryProvidedAttentionBlock if cond_provided else AttentionBlock
|
||||
self.attn = nn.ModuleList([block(embedding_dim, num_attn_heads) for _ in range(attn_blocks)])
|
||||
self.cond_provided = cond_provided
|
||||
|
||||
# x_s: (b,n,d); b=batch_sz, n=number of embeddings, d=embedding_dim
|
||||
# cond: (b,d) or None
|
||||
def forward(self, x_s, cond=None):
|
||||
assert cond is not None and self.cond_provided or cond is None and not self.cond_provided
|
||||
y = x_s
|
||||
for blk in self.attn:
|
||||
if self.cond_provided:
|
||||
y = blk(cond, y)
|
||||
else:
|
||||
y = blk(y)
|
||||
return y[:, 0]
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
x = torch.randn(2, 80, 223)
|
||||
cond = torch.randn(2, 512)
|
||||
encs = [AudioMiniEncoder(80, 512) for _ in range(5)]
|
||||
combiner = EmbeddingCombiner(512)
|
||||
|
||||
e = torch.stack([e(x) for e in encs], dim=2)
|
||||
|
||||
print(combiner(e, cond).shape)
|
Loading…
Reference in New Issue
Block a user