Support variant input sizes and scales
This commit is contained in:
parent
ebda70fcba
commit
05aafef938
|
@ -46,7 +46,7 @@ class RRDB(nn.Module):
|
||||||
|
|
||||||
|
|
||||||
class RRDBNet(nn.Module):
|
class RRDBNet(nn.Module):
|
||||||
def __init__(self, in_nc, out_nc, nf, nb, gc=32):
|
def __init__(self, in_nc, out_nc, nf, nb, gc=32, interpolation_scale_factor=2):
|
||||||
super(RRDBNet, self).__init__()
|
super(RRDBNet, self).__init__()
|
||||||
RRDB_block_f = functools.partial(RRDB, nf=nf, gc=gc)
|
RRDB_block_f = functools.partial(RRDB, nf=nf, gc=gc)
|
||||||
|
|
||||||
|
@ -61,13 +61,15 @@ class RRDBNet(nn.Module):
|
||||||
|
|
||||||
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
|
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
|
||||||
|
|
||||||
|
self.interpolation_scale_factor = interpolation_scale_factor
|
||||||
|
|
||||||
def forward(self, x):
|
def forward(self, x):
|
||||||
fea = self.conv_first(x)
|
fea = self.conv_first(x)
|
||||||
trunk = self.trunk_conv(self.RRDB_trunk(fea))
|
trunk = self.trunk_conv(self.RRDB_trunk(fea))
|
||||||
fea = fea + trunk
|
fea = fea + trunk
|
||||||
|
|
||||||
fea = self.lrelu(self.upconv1(F.interpolate(fea, scale_factor=2, mode='nearest')))
|
fea = self.lrelu(self.upconv1(F.interpolate(fea, scale_factor=self.interpolation_scale_factor, mode='nearest')))
|
||||||
fea = self.lrelu(self.upconv2(F.interpolate(fea, scale_factor=2, mode='nearest')))
|
fea = self.lrelu(self.upconv2(F.interpolate(fea, scale_factor=self.interpolation_scale_factor, mode='nearest')))
|
||||||
out = self.conv_last(self.lrelu(self.HRconv(fea)))
|
out = self.conv_last(self.lrelu(self.HRconv(fea)))
|
||||||
|
|
||||||
return out
|
return out
|
||||||
|
|
|
@ -32,7 +32,7 @@ class Discriminator_VGG_128(nn.Module):
|
||||||
self.conv4_1 = nn.Conv2d(nf * 8, nf * 8, 4, 2, 1, bias=False)
|
self.conv4_1 = nn.Conv2d(nf * 8, nf * 8, 4, 2, 1, bias=False)
|
||||||
self.bn4_1 = nn.BatchNorm2d(nf * 8, affine=True)
|
self.bn4_1 = nn.BatchNorm2d(nf * 8, affine=True)
|
||||||
|
|
||||||
self.linear1 = nn.Linear(512 * 4 * input_img_factor * 4 * input_img_factor, 100)
|
self.linear1 = nn.Linear(int(512 * 4 * input_img_factor * 4 * input_img_factor), 100)
|
||||||
self.linear2 = nn.Linear(100, 1)
|
self.linear2 = nn.Linear(100, 1)
|
||||||
|
|
||||||
# activation function
|
# activation function
|
||||||
|
|
Loading…
Reference in New Issue
Block a user