Remove collating from paired_voice_audio_dataset
This will now be done at the model level, which is more efficient
This commit is contained in:
parent
e7a705fe6e
commit
06c1093090
|
@ -89,10 +89,7 @@ class TextWavLoader(torch.utils.data.Dataset):
|
|||
random.shuffle(self.audiopaths_and_text)
|
||||
self.max_wav_len = opt_get(hparams, ['max_wav_length'], None)
|
||||
self.max_text_len = opt_get(hparams, ['max_text_length'], None)
|
||||
# If needs_collate=False, all outputs will be aligned and padded at maximum length.
|
||||
self.needs_collate = opt_get(hparams, ['needs_collate'], True)
|
||||
if not self.needs_collate:
|
||||
assert self.max_wav_len is not None and self.max_text_len is not None
|
||||
assert self.max_wav_len is not None and self.max_text_len is not None
|
||||
self.use_bpe_tokenizer = opt_get(hparams, ['use_bpe_tokenizer'], True)
|
||||
if self.use_bpe_tokenizer:
|
||||
from data.audio.voice_tokenizer import VoiceBpeTokenizer
|
||||
|
@ -137,83 +134,26 @@ class TextWavLoader(torch.utils.data.Dataset):
|
|||
return self[rv]
|
||||
orig_output = wav.shape[-1]
|
||||
orig_text_len = tseq.shape[0]
|
||||
if not self.needs_collate:
|
||||
if wav.shape[-1] != self.max_wav_len:
|
||||
wav = F.pad(wav, (0, self.max_wav_len - wav.shape[-1]))
|
||||
if tseq.shape[0] != self.max_text_len:
|
||||
tseq = F.pad(tseq, (0, self.max_text_len - tseq.shape[0]))
|
||||
res = {
|
||||
'real_text': text,
|
||||
'padded_text': tseq,
|
||||
'text_lengths': torch.tensor(orig_text_len, dtype=torch.long),
|
||||
'wav': wav,
|
||||
'wav_lengths': torch.tensor(orig_output, dtype=torch.long),
|
||||
'filenames': path
|
||||
}
|
||||
if self.load_conditioning:
|
||||
res['conditioning'] = cond
|
||||
return res
|
||||
return tseq, wav, path, text, cond
|
||||
if wav.shape[-1] != self.max_wav_len:
|
||||
wav = F.pad(wav, (0, self.max_wav_len - wav.shape[-1]))
|
||||
if tseq.shape[0] != self.max_text_len:
|
||||
tseq = F.pad(tseq, (0, self.max_text_len - tseq.shape[0]))
|
||||
res = {
|
||||
'real_text': text,
|
||||
'padded_text': tseq,
|
||||
'text_lengths': torch.tensor(orig_text_len, dtype=torch.long),
|
||||
'wav': wav,
|
||||
'wav_lengths': torch.tensor(orig_output, dtype=torch.long),
|
||||
'filenames': path
|
||||
}
|
||||
if self.load_conditioning:
|
||||
res['conditioning'] = cond
|
||||
return res
|
||||
|
||||
def __len__(self):
|
||||
return len(self.audiopaths_and_text)
|
||||
|
||||
|
||||
class TextMelCollate():
|
||||
""" Zero-pads model inputs and targets based on number of frames per step
|
||||
"""
|
||||
def __call__(self, batch):
|
||||
"""Collate's training batch from normalized text and wav
|
||||
PARAMS
|
||||
------
|
||||
batch: [text_normalized, wav, filename, text]
|
||||
"""
|
||||
# Right zero-pad all one-hot text sequences to max input length
|
||||
input_lengths, ids_sorted_decreasing = torch.sort(
|
||||
torch.LongTensor([len(x[0]) for x in batch]),
|
||||
dim=0, descending=True)
|
||||
max_input_len = input_lengths[0]
|
||||
|
||||
text_padded = torch.LongTensor(len(batch), max_input_len)
|
||||
text_padded.zero_()
|
||||
filenames = []
|
||||
real_text = []
|
||||
conds = []
|
||||
for i in range(len(ids_sorted_decreasing)):
|
||||
text = batch[ids_sorted_decreasing[i]][0]
|
||||
text_padded[i, :text.size(0)] = text
|
||||
filenames.append(batch[ids_sorted_decreasing[i]][2])
|
||||
real_text.append(batch[ids_sorted_decreasing[i]][3])
|
||||
c = batch[ids_sorted_decreasing[i]][4]
|
||||
if c is not None:
|
||||
conds.append(c)
|
||||
|
||||
# Right zero-pad wav
|
||||
num_wavs = batch[0][1].size(0)
|
||||
max_target_len = max([x[1].size(1) for x in batch])
|
||||
|
||||
# include mel padded and gate padded
|
||||
wav_padded = torch.FloatTensor(len(batch), num_wavs, max_target_len)
|
||||
wav_padded.zero_()
|
||||
output_lengths = torch.LongTensor(len(batch))
|
||||
for i in range(len(ids_sorted_decreasing)):
|
||||
wav = batch[ids_sorted_decreasing[i]][1]
|
||||
wav_padded[i, :, :wav.size(1)] = wav
|
||||
output_lengths[i] = wav.size(1)
|
||||
|
||||
res = {
|
||||
'padded_text': text_padded,
|
||||
'text_lengths': input_lengths,
|
||||
'wav': wav_padded,
|
||||
'wav_lengths': output_lengths,
|
||||
'filenames': filenames,
|
||||
'real_text': real_text,
|
||||
}
|
||||
if len(conds) > 0:
|
||||
res['conditioning'] = torch.stack(conds)
|
||||
return res
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
batch_sz = 8
|
||||
params = {
|
||||
|
@ -223,7 +163,6 @@ if __name__ == '__main__':
|
|||
'phase': 'train',
|
||||
'n_workers': 0,
|
||||
'batch_size': batch_sz,
|
||||
'needs_collate': True,
|
||||
'max_wav_length': 255995,
|
||||
'max_text_length': 200,
|
||||
'sample_rate': 22050,
|
||||
|
|
Loading…
Reference in New Issue
Block a user