Remove collating from paired_voice_audio_dataset
This will now be done at the model level, which is more efficient
This commit is contained in:
parent
e7a705fe6e
commit
06c1093090
|
@ -89,10 +89,7 @@ class TextWavLoader(torch.utils.data.Dataset):
|
||||||
random.shuffle(self.audiopaths_and_text)
|
random.shuffle(self.audiopaths_and_text)
|
||||||
self.max_wav_len = opt_get(hparams, ['max_wav_length'], None)
|
self.max_wav_len = opt_get(hparams, ['max_wav_length'], None)
|
||||||
self.max_text_len = opt_get(hparams, ['max_text_length'], None)
|
self.max_text_len = opt_get(hparams, ['max_text_length'], None)
|
||||||
# If needs_collate=False, all outputs will be aligned and padded at maximum length.
|
assert self.max_wav_len is not None and self.max_text_len is not None
|
||||||
self.needs_collate = opt_get(hparams, ['needs_collate'], True)
|
|
||||||
if not self.needs_collate:
|
|
||||||
assert self.max_wav_len is not None and self.max_text_len is not None
|
|
||||||
self.use_bpe_tokenizer = opt_get(hparams, ['use_bpe_tokenizer'], True)
|
self.use_bpe_tokenizer = opt_get(hparams, ['use_bpe_tokenizer'], True)
|
||||||
if self.use_bpe_tokenizer:
|
if self.use_bpe_tokenizer:
|
||||||
from data.audio.voice_tokenizer import VoiceBpeTokenizer
|
from data.audio.voice_tokenizer import VoiceBpeTokenizer
|
||||||
|
@ -137,83 +134,26 @@ class TextWavLoader(torch.utils.data.Dataset):
|
||||||
return self[rv]
|
return self[rv]
|
||||||
orig_output = wav.shape[-1]
|
orig_output = wav.shape[-1]
|
||||||
orig_text_len = tseq.shape[0]
|
orig_text_len = tseq.shape[0]
|
||||||
if not self.needs_collate:
|
if wav.shape[-1] != self.max_wav_len:
|
||||||
if wav.shape[-1] != self.max_wav_len:
|
wav = F.pad(wav, (0, self.max_wav_len - wav.shape[-1]))
|
||||||
wav = F.pad(wav, (0, self.max_wav_len - wav.shape[-1]))
|
if tseq.shape[0] != self.max_text_len:
|
||||||
if tseq.shape[0] != self.max_text_len:
|
tseq = F.pad(tseq, (0, self.max_text_len - tseq.shape[0]))
|
||||||
tseq = F.pad(tseq, (0, self.max_text_len - tseq.shape[0]))
|
res = {
|
||||||
res = {
|
'real_text': text,
|
||||||
'real_text': text,
|
'padded_text': tseq,
|
||||||
'padded_text': tseq,
|
'text_lengths': torch.tensor(orig_text_len, dtype=torch.long),
|
||||||
'text_lengths': torch.tensor(orig_text_len, dtype=torch.long),
|
'wav': wav,
|
||||||
'wav': wav,
|
'wav_lengths': torch.tensor(orig_output, dtype=torch.long),
|
||||||
'wav_lengths': torch.tensor(orig_output, dtype=torch.long),
|
'filenames': path
|
||||||
'filenames': path
|
}
|
||||||
}
|
if self.load_conditioning:
|
||||||
if self.load_conditioning:
|
res['conditioning'] = cond
|
||||||
res['conditioning'] = cond
|
return res
|
||||||
return res
|
|
||||||
return tseq, wav, path, text, cond
|
|
||||||
|
|
||||||
def __len__(self):
|
def __len__(self):
|
||||||
return len(self.audiopaths_and_text)
|
return len(self.audiopaths_and_text)
|
||||||
|
|
||||||
|
|
||||||
class TextMelCollate():
|
|
||||||
""" Zero-pads model inputs and targets based on number of frames per step
|
|
||||||
"""
|
|
||||||
def __call__(self, batch):
|
|
||||||
"""Collate's training batch from normalized text and wav
|
|
||||||
PARAMS
|
|
||||||
------
|
|
||||||
batch: [text_normalized, wav, filename, text]
|
|
||||||
"""
|
|
||||||
# Right zero-pad all one-hot text sequences to max input length
|
|
||||||
input_lengths, ids_sorted_decreasing = torch.sort(
|
|
||||||
torch.LongTensor([len(x[0]) for x in batch]),
|
|
||||||
dim=0, descending=True)
|
|
||||||
max_input_len = input_lengths[0]
|
|
||||||
|
|
||||||
text_padded = torch.LongTensor(len(batch), max_input_len)
|
|
||||||
text_padded.zero_()
|
|
||||||
filenames = []
|
|
||||||
real_text = []
|
|
||||||
conds = []
|
|
||||||
for i in range(len(ids_sorted_decreasing)):
|
|
||||||
text = batch[ids_sorted_decreasing[i]][0]
|
|
||||||
text_padded[i, :text.size(0)] = text
|
|
||||||
filenames.append(batch[ids_sorted_decreasing[i]][2])
|
|
||||||
real_text.append(batch[ids_sorted_decreasing[i]][3])
|
|
||||||
c = batch[ids_sorted_decreasing[i]][4]
|
|
||||||
if c is not None:
|
|
||||||
conds.append(c)
|
|
||||||
|
|
||||||
# Right zero-pad wav
|
|
||||||
num_wavs = batch[0][1].size(0)
|
|
||||||
max_target_len = max([x[1].size(1) for x in batch])
|
|
||||||
|
|
||||||
# include mel padded and gate padded
|
|
||||||
wav_padded = torch.FloatTensor(len(batch), num_wavs, max_target_len)
|
|
||||||
wav_padded.zero_()
|
|
||||||
output_lengths = torch.LongTensor(len(batch))
|
|
||||||
for i in range(len(ids_sorted_decreasing)):
|
|
||||||
wav = batch[ids_sorted_decreasing[i]][1]
|
|
||||||
wav_padded[i, :, :wav.size(1)] = wav
|
|
||||||
output_lengths[i] = wav.size(1)
|
|
||||||
|
|
||||||
res = {
|
|
||||||
'padded_text': text_padded,
|
|
||||||
'text_lengths': input_lengths,
|
|
||||||
'wav': wav_padded,
|
|
||||||
'wav_lengths': output_lengths,
|
|
||||||
'filenames': filenames,
|
|
||||||
'real_text': real_text,
|
|
||||||
}
|
|
||||||
if len(conds) > 0:
|
|
||||||
res['conditioning'] = torch.stack(conds)
|
|
||||||
return res
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
batch_sz = 8
|
batch_sz = 8
|
||||||
params = {
|
params = {
|
||||||
|
@ -223,7 +163,6 @@ if __name__ == '__main__':
|
||||||
'phase': 'train',
|
'phase': 'train',
|
||||||
'n_workers': 0,
|
'n_workers': 0,
|
||||||
'batch_size': batch_sz,
|
'batch_size': batch_sz,
|
||||||
'needs_collate': True,
|
|
||||||
'max_wav_length': 255995,
|
'max_wav_length': 255995,
|
||||||
'max_text_length': 200,
|
'max_text_length': 200,
|
||||||
'sample_rate': 22050,
|
'sample_rate': 22050,
|
||||||
|
|
Loading…
Reference in New Issue
Block a user