Use quantizer from rosinality/vqvae with openai dvae
This commit is contained in:
parent
d3ace153af
commit
0799d95af5
|
@ -7,6 +7,7 @@ import torch.nn.functional as F
|
|||
from einops import rearrange
|
||||
from torch import einsum
|
||||
|
||||
from models.vqvae.vqvae import Quantize
|
||||
from trainer.networks import register_model
|
||||
from utils.util import opt_get
|
||||
|
||||
|
@ -51,9 +52,6 @@ class DiscreteVAE(nn.Module):
|
|||
hidden_dim = 64,
|
||||
channels = 3,
|
||||
smooth_l1_loss = False,
|
||||
starting_temperature = 0.5,
|
||||
temperature_annealing_rate = 0,
|
||||
min_temperature = .5,
|
||||
straight_through = False,
|
||||
normalization = None, # ((0.5,) * 3, (0.5,) * 3),
|
||||
record_codes = False,
|
||||
|
@ -64,13 +62,9 @@ class DiscreteVAE(nn.Module):
|
|||
|
||||
self.num_tokens = num_tokens
|
||||
self.num_layers = num_layers
|
||||
self.starting_temperature = starting_temperature
|
||||
self.current_temperature = starting_temperature
|
||||
self.straight_through = straight_through
|
||||
self.codebook = nn.Embedding(num_tokens, codebook_dim)
|
||||
self.codebook = Quantize(num_tokens, codebook_dim)
|
||||
self.positional_dims = positional_dims
|
||||
self.temperature_annealing_rate = temperature_annealing_rate
|
||||
self.min_temperature = min_temperature
|
||||
|
||||
assert positional_dims > 0 and positional_dims < 3 # This VAE only supports 1d and 2d inputs for now.
|
||||
if positional_dims == 2:
|
||||
|
@ -130,14 +124,9 @@ class DiscreteVAE(nn.Module):
|
|||
images.sub_(means).div_(stds)
|
||||
return images
|
||||
|
||||
def update_for_step(self, step, __):
|
||||
# Run the annealing schedule
|
||||
if self.temperature_annealing_rate != 0:
|
||||
self.current_temperature = max(self.starting_temperature * math.exp(-self.temperature_annealing_rate * step), self.min_temperature)
|
||||
|
||||
def get_debug_values(self, step, __):
|
||||
# Report annealing schedule
|
||||
return {'current_annealing_temperature': self.current_temperature, 'histogram_codes': self.codes}
|
||||
return {'histogram_codes': self.codes}
|
||||
|
||||
@torch.no_grad()
|
||||
@eval_decorator
|
||||
|
@ -150,7 +139,7 @@ class DiscreteVAE(nn.Module):
|
|||
self,
|
||||
img_seq
|
||||
):
|
||||
image_embeds = self.codebook(img_seq)
|
||||
image_embeds = self.codebook.embed_code(img_seq)
|
||||
b, n, d = image_embeds.shape
|
||||
|
||||
kwargs = {}
|
||||
|
@ -168,31 +157,18 @@ class DiscreteVAE(nn.Module):
|
|||
self,
|
||||
img
|
||||
):
|
||||
device, num_tokens = img.device, self.num_tokens
|
||||
img = self.norm(img)
|
||||
logits = self.encoder(img)
|
||||
soft_one_hot = F.gumbel_softmax(logits, tau = self.current_temperature, dim = 1, hard = self.straight_through)
|
||||
|
||||
if self.positional_dims == 1:
|
||||
arrange = 'b n s, n d -> b d s'
|
||||
else:
|
||||
arrange = 'b n h w, n d -> b d h w'
|
||||
sampled = einsum(arrange, soft_one_hot, self.codebook.weight)
|
||||
logits = self.encoder(img).permute((0,2,3,1) if len(img.shape) == 4 else (0,2,1))
|
||||
sampled, commitment_loss, codes = self.codebook(logits)
|
||||
sampled = sampled.permute((0,3,1,2) if len(img.shape) == 4 else (0,2,1))
|
||||
out = self.decoder(sampled)
|
||||
|
||||
# reconstruction loss
|
||||
recon_loss = self.loss_fn(img, out)
|
||||
|
||||
# kl divergence
|
||||
arrange = 'b n h w -> b (h w) n' if self.positional_dims == 2 else 'b n s -> b s n'
|
||||
logits = rearrange(logits, arrange)
|
||||
log_qy = F.log_softmax(logits, dim = -1)
|
||||
log_uniform = torch.log(torch.tensor([1. / num_tokens], device = device))
|
||||
kl_div = F.kl_div(log_uniform, log_qy, None, None, 'batchmean', log_target = True)
|
||||
|
||||
# This is so we can debug the distribution of codes being learned.
|
||||
if self.record_codes:
|
||||
codes = logits.argmax(dim = 2).flatten()
|
||||
codes = codes.flatten()
|
||||
l = codes.shape[0]
|
||||
i = self.code_ind if (self.codes.shape[0] - self.code_ind) > l else self.codes.shape[0] - l
|
||||
self.codes[i:i+l] = codes.cpu()
|
||||
|
@ -200,7 +176,7 @@ class DiscreteVAE(nn.Module):
|
|||
if self.code_ind >= self.codes.shape[0]:
|
||||
self.code_ind = 0
|
||||
|
||||
return recon_loss, kl_div, out
|
||||
return recon_loss, commitment_loss, out
|
||||
|
||||
|
||||
@register_model
|
||||
|
@ -214,4 +190,4 @@ if __name__ == '__main__':
|
|||
#print(o.shape)
|
||||
v = DiscreteVAE(channels=1, normalization=None, positional_dims=1)
|
||||
o=v(torch.randn(1,1,256))
|
||||
print(o.shape)
|
||||
print(o[-1].shape)
|
||||
|
|
Loading…
Reference in New Issue
Block a user