Add labeling feature to image_folder_dataset

This commit is contained in:
James Betker 2020-12-14 23:58:37 -07:00
parent ec0ee25f4b
commit 087e9280ed
2 changed files with 104 additions and 28 deletions

View File

@ -10,6 +10,7 @@ import os
from data import util
# Builds a dataset created from a simple folder containing a list of training/test/validation images.
from data.image_corruptor import ImageCorruptor
from data.image_label_parser import VsNetImageLabeler
class ImageFolderDataset:
@ -28,21 +29,29 @@ class ImageFolderDataset:
else:
self.weights = opt['weights']
# Just scan the given directory for images of standard types.
supported_types = ['jpg', 'jpeg', 'png', 'gif']
self.image_paths = []
for path, weight in zip(self.paths, self.weights):
cache_path = os.path.join(path, 'cache.pth')
if os.path.exists(cache_path):
imgs = torch.load(cache_path)
else:
print("Building image folder cache, this can take some time for large datasets..")
imgs = []
for ext in supported_types:
imgs.extend(glob.glob(os.path.join(path, "*." + ext)))
torch.save(imgs, cache_path)
for w in range(weight):
self.image_paths.extend(imgs)
if 'labeler' in opt.keys():
if opt['labeler']['type'] == 'patch_labels':
self.labeler = VsNetImageLabeler(opt['labeler']['label_file'])
assert len(self.paths) == 1 # Only a single base-path is supported for labeled images.
self.image_paths = self.labeler.get_labeled_paths(self.paths[0])
else:
self.labeler = None
# Just scan the given directory for images of standard types.
supported_types = ['jpg', 'jpeg', 'png', 'gif']
self.image_paths = []
for path, weight in zip(self.paths, self.weights):
cache_path = os.path.join(path, 'cache.pth')
if os.path.exists(cache_path):
imgs = torch.load(cache_path)
else:
print("Building image folder cache, this can take some time for large datasets..")
imgs = []
for ext in supported_types:
imgs.extend(glob.glob(os.path.join(path, "*." + ext)))
torch.save(imgs, cache_path)
for w in range(weight):
self.image_paths.extend(imgs)
self.len = len(self.image_paths)
def get_paths(self):
@ -74,6 +83,7 @@ class ImageFolderDataset:
h, w, _ = hs[0].shape
ls = []
if self.corrupt_before_downsize:
hs = [h.copy() for h in hs]
hs = self.corruptor.corrupt_images(hs)
for hq in hs:
ls.append(cv2.resize(hq, (h // self.scale, w // self.scale), interpolation=cv2.INTER_AREA))
@ -87,6 +97,9 @@ class ImageFolderDataset:
def __getitem__(self, item):
hq = util.read_img(None, self.image_paths[item], rgb=True)
if self.labeler:
assert hq.shape[0] == hq.shape[1] # This just has not been accomodated yet.
dim = hq.shape[0]
hs = self.resize_hq([hq])
ls = self.synthesize_lq(hs)
@ -95,13 +108,19 @@ class ImageFolderDataset:
hq = torch.from_numpy(np.ascontiguousarray(np.transpose(hs[0], (2, 0, 1)))).float()
lq = torch.from_numpy(np.ascontiguousarray(np.transpose(ls[0], (2, 0, 1)))).float()
return {'lq': lq, 'hq': hq, 'LQ_path': self.image_paths[item], 'HQ_path': self.image_paths[item]}
out_dict = {'lq': lq, 'hq': hq, 'LQ_path': self.image_paths[item], 'HQ_path': self.image_paths[item]}
if self.labeler:
base_file = self.image_paths[item].replace(self.paths[0], "")
assert dim % hq.shape[1] == 0
lbls, lbl_masks = self.labeler.get_labels_as_tensor(hq, base_file, dim // hq.shape[1])
out_dict['labels'] = lbls
out_dict['labels_mask'] = lbl_masks
return out_dict
if __name__ == '__main__':
opt = {
'name': 'amalgam',
'paths': ['F:\\4k6k\\datasets\\ns_images\\imagesets\\random_100_1024px'],
'paths': ['F:\\4k6k\\datasets\\ns_images\\512_unsupervised\\'],
'weights': [1],
'target_size': 128,
'force_multiple': 32,
@ -110,20 +129,19 @@ if __name__ == '__main__':
'random_corruptions': ['noise-5', 'none'],
'num_corrupts_per_image': 1,
'corrupt_before_downsize': True,
'labeler': {
'type': 'patch_labels',
'label_file': 'F:\\4k6k\\datasets\\ns_images\\512_unsupervised\\categories.json'
}
}
ds = ImageFolderDataset(opt)
import os
os.makedirs("debug", exist_ok=True)
for i in range(0, len(ds)):
o = ds[random.randint(0, len(ds))]
#for k, v in o.items():
k = 'lq'
v = o[k]
#if 'LQ' in k and 'path' not in k and 'center' not in k:
#if 'full' in k:
#masked = v[:3, :, :] * v[3]
#torchvision.utils.save_image(masked.unsqueeze(0), "debug/%i_%s_masked.png" % (i, k))
#v = v[:3, :, :]
o = ds[random.randint(0, len(ds)-1)]
hq = o['hq']
masked = (o['labels_mask'] * .5 + .5) * hq
import torchvision
torchvision.utils.save_image(v.unsqueeze(0), "debug/%i_%s.png" % (i, k))
torchvision.utils.save_image(hq.unsqueeze(0), "debug/%i_hq.png" % (i,))
torchvision.utils.save_image(masked.unsqueeze(0), "debug/%i_masked.png" % (i,))

View File

@ -0,0 +1,58 @@
import os
import orjson as json
# Given a JSON file produced by the VS.net image labeler utility, produces a dict where the keys are image file names
# and the values are a list of object with the following properties:
# [patch_top, patch_left, patch_height, patch_width, label]
import torch
class VsNetImageLabeler:
def __init__(self, label_file):
with open(label_file, "r") as read_file:
# Format of JSON file:
# "<nonsense>" {
# "label": "<label>"
# "keyBinding": "<nonsense>"
# "labeledImages": [
# { "path", "label", "patch_top", "patch_left", "patch_height", "patch_width" }
# ]
# }
categories = json.loads(read_file.read())
labeled_images = {}
available_labels = []
for cat in categories.values():
for lbli in cat['labeledImages']:
pth = lbli['path']
if pth not in labeled_images.keys():
labeled_images[pth] = []
labeled_images[pth].append(lbli)
if lbli['label'] not in available_labels:
available_labels.append(lbli['label'])
# Build the label values, from [1,inf]
label_value_dict = {}
for i, l in enumerate(available_labels):
label_value_dict[l] = i+1
# Insert "labelValue" for each entry.
for v in labeled_images.values():
for l in v:
l['labelValue'] = label_value_dict[l['label']]
self.labeled_images = labeled_images
def get_labeled_paths(self, base_path):
return [os.path.join(base_path, pth) for pth in self.labeled_images]
def get_labels_as_tensor(self, hq, img_key, resize_factor):
labels = torch.zeros(hq.shape, dtype=torch.long)
mask = torch.zeros_like(hq)
lbl_list = self.labeled_images[img_key]
for patch_lbl in lbl_list:
t, l, h, w = patch_lbl['patch_top'] // resize_factor, patch_lbl['patch_left'] // resize_factor, \
patch_lbl['patch_height'] // resize_factor, patch_lbl['patch_width'] // resize_factor
val = patch_lbl['labelValue']
labels[:,t:t+h,l:l+w] = val
mask[:,t:t+h,l:l+w] = 1.0
return labels, mask