bunch of new stuff
This commit is contained in:
parent
8f8b189025
commit
0a9d4d4afc
64
codes/models/audio/music/gpt_music.py
Normal file
64
codes/models/audio/music/gpt_music.py
Normal file
|
@ -0,0 +1,64 @@
|
|||
import torch
|
||||
from torch import nn
|
||||
import torch.nn.functional as F
|
||||
from transformers import GPT2Config, GPT2Model
|
||||
|
||||
from models.audio.music.music_quantizer import MusicQuantizer
|
||||
from models.audio.music.music_quantizer2 import MusicQuantizer2
|
||||
from trainer.networks import register_model
|
||||
from utils.util import opt_get
|
||||
|
||||
|
||||
class GptMusic(nn.Module):
|
||||
def __init__(self, dim, layers, num_target_vectors=512, num_target_groups=2, cv_dim=1024, num_upper_vectors=64, num_upper_groups=4):
|
||||
super().__init__()
|
||||
self.num_groups = num_target_groups
|
||||
self.config = GPT2Config(vocab_size=1, n_positions=8192, n_embd=dim, n_layer=layers, n_head=dim//64,
|
||||
n_inner=dim*2)
|
||||
self.target_quantizer = MusicQuantizer(inp_channels=256, inner_dim=[1024,1024,512], codevector_dim=cv_dim, codebook_size=num_target_vectors, codebook_groups=num_target_groups)
|
||||
del self.target_quantizer.decoder
|
||||
del self.target_quantizer.up
|
||||
self.upper_quantizer = MusicQuantizer2(inp_channels=256, inner_dim=[1024,896,768,640,512,384], codevector_dim=cv_dim, codebook_size=num_upper_vectors, codebook_groups=num_upper_groups)
|
||||
del self.upper_quantizer.up
|
||||
self.gpt = GPT2Model(self.config)
|
||||
del self.gpt.wte # Unused, we'll do our own embeddings.
|
||||
self.embeddings = nn.ModuleList([nn.Embedding(num_target_vectors, dim // num_target_groups) for _ in range(num_target_groups)])
|
||||
self.upper_proj = nn.Conv1d(cv_dim, dim, kernel_size=1)
|
||||
self.heads = nn.ModuleList([nn.Linear(dim, num_target_vectors) for _ in range(num_target_groups)])
|
||||
|
||||
|
||||
def forward(self, mel):
|
||||
with torch.no_grad():
|
||||
self.target_quantizer.eval()
|
||||
codes = self.target_quantizer.get_codes(mel)
|
||||
upper_vector, upper_diversity = self.upper_quantizer(mel, return_decoder_latent=True)
|
||||
upper_vector = self.upper_proj(upper_vector)
|
||||
upper_vector = F.interpolate(upper_vector, size=codes.shape[1], mode='linear')
|
||||
upper_vector = upper_vector.permute(0,2,1)
|
||||
|
||||
inputs = codes[:, :-1]
|
||||
upper_vector = upper_vector[:, :-1]
|
||||
targets = codes[:, 1:]
|
||||
|
||||
h = [embedding(inputs[:, :, i]) for i, embedding in enumerate(self.embeddings)]
|
||||
h = torch.cat(h, dim=-1) + upper_vector
|
||||
h = self.gpt(inputs_embeds=h, return_dict=True).last_hidden_state
|
||||
|
||||
losses = 0
|
||||
for i, head in enumerate(self.heads):
|
||||
logits = head(h).permute(0,2,1)
|
||||
loss = F.cross_entropy(logits, targets[:,:,i])
|
||||
losses = losses + loss
|
||||
|
||||
return losses / self.num_groups
|
||||
|
||||
|
||||
@register_model
|
||||
def register_music_gpt(opt_net, opt):
|
||||
return GptMusic(**opt_get(opt_net, ['kwargs'], {}))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
model = GptMusic(512, 12)
|
||||
mel = torch.randn(2,256,400)
|
||||
model(mel)
|
|
@ -1,262 +0,0 @@
|
|||
import random
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from torch import autocast
|
||||
from torchaudio.transforms import TimeMasking, FrequencyMasking
|
||||
|
||||
from models.diffusion.nn import timestep_embedding, normalization, zero_module, conv_nd, linear
|
||||
from models.diffusion.unet_diffusion import AttentionBlock, TimestepEmbedSequential, TimestepBlock
|
||||
from trainer.networks import register_model
|
||||
from utils.util import checkpoint
|
||||
|
||||
def is_sequence(t):
|
||||
return t.dtype == torch.long
|
||||
|
||||
|
||||
class ResBlock(TimestepBlock):
|
||||
def __init__(
|
||||
self,
|
||||
channels,
|
||||
emb_channels,
|
||||
dropout,
|
||||
out_channels=None,
|
||||
dims=2,
|
||||
kernel_size=3,
|
||||
efficient_config=True,
|
||||
use_scale_shift_norm=False,
|
||||
):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.emb_channels = emb_channels
|
||||
self.dropout = dropout
|
||||
self.out_channels = out_channels or channels
|
||||
self.use_scale_shift_norm = use_scale_shift_norm
|
||||
padding = {1: 0, 3: 1, 5: 2}[kernel_size]
|
||||
eff_kernel = 1 if efficient_config else 3
|
||||
eff_padding = 0 if efficient_config else 1
|
||||
|
||||
self.in_layers = nn.Sequential(
|
||||
normalization(channels),
|
||||
nn.SiLU(),
|
||||
conv_nd(dims, channels, self.out_channels, eff_kernel, padding=eff_padding),
|
||||
)
|
||||
|
||||
self.emb_layers = nn.Sequential(
|
||||
nn.SiLU(),
|
||||
linear(
|
||||
emb_channels,
|
||||
2 * self.out_channels if use_scale_shift_norm else self.out_channels,
|
||||
),
|
||||
)
|
||||
self.out_layers = nn.Sequential(
|
||||
normalization(self.out_channels),
|
||||
nn.SiLU(),
|
||||
nn.Dropout(p=dropout),
|
||||
zero_module(
|
||||
conv_nd(dims, self.out_channels, self.out_channels, kernel_size, padding=padding)
|
||||
),
|
||||
)
|
||||
|
||||
if self.out_channels == channels:
|
||||
self.skip_connection = nn.Identity()
|
||||
else:
|
||||
self.skip_connection = conv_nd(dims, channels, self.out_channels, eff_kernel, padding=eff_padding)
|
||||
|
||||
def forward(self, x, emb):
|
||||
"""
|
||||
Apply the block to a Tensor, conditioned on a timestep embedding.
|
||||
|
||||
:param x: an [N x C x ...] Tensor of features.
|
||||
:param emb: an [N x emb_channels] Tensor of timestep embeddings.
|
||||
:return: an [N x C x ...] Tensor of outputs.
|
||||
"""
|
||||
return checkpoint(
|
||||
self._forward, x, emb
|
||||
)
|
||||
|
||||
def _forward(self, x, emb):
|
||||
h = self.in_layers(x)
|
||||
emb_out = self.emb_layers(emb).type(h.dtype)
|
||||
while len(emb_out.shape) < len(h.shape):
|
||||
emb_out = emb_out[..., None]
|
||||
if self.use_scale_shift_norm:
|
||||
out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
|
||||
scale, shift = torch.chunk(emb_out, 2, dim=1)
|
||||
h = out_norm(h) * (1 + scale) + shift
|
||||
h = out_rest(h)
|
||||
else:
|
||||
h = h + emb_out
|
||||
h = self.out_layers(h)
|
||||
return self.skip_connection(x) + h
|
||||
|
||||
|
||||
class DiffusionLayer(TimestepBlock):
|
||||
def __init__(self, model_channels, dropout, num_heads):
|
||||
super().__init__()
|
||||
self.resblk = ResBlock(model_channels, model_channels, dropout, model_channels, dims=1, use_scale_shift_norm=True)
|
||||
self.attn = AttentionBlock(model_channels, num_heads, relative_pos_embeddings=True)
|
||||
|
||||
def forward(self, x, time_emb):
|
||||
y = self.resblk(x, time_emb)
|
||||
return self.attn(y)
|
||||
|
||||
|
||||
class MusicGenerator(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
model_channels=512,
|
||||
num_layers=8,
|
||||
in_channels=100,
|
||||
out_channels=200, # mean and variance
|
||||
dropout=0,
|
||||
use_fp16=False,
|
||||
num_heads=16,
|
||||
# Parameters for regularization.
|
||||
layer_drop=.1,
|
||||
unconditioned_percentage=.1, # This implements a mechanism similar to what is used in classifier-free training.
|
||||
# Masking parameters.
|
||||
frequency_mask_percent_max=0,
|
||||
time_mask_percent_max=0,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.in_channels = in_channels
|
||||
self.model_channels = model_channels
|
||||
self.out_channels = out_channels
|
||||
self.dropout = dropout
|
||||
self.num_heads = num_heads
|
||||
self.unconditioned_percentage = unconditioned_percentage
|
||||
self.enable_fp16 = use_fp16
|
||||
self.layer_drop = layer_drop
|
||||
self.time_mask_percent_max = time_mask_percent_max
|
||||
self.frequency_mask_percent_mask = frequency_mask_percent_max
|
||||
|
||||
self.inp_block = conv_nd(1, in_channels, model_channels, 3, 1, 1)
|
||||
self.time_embed = nn.Sequential(
|
||||
linear(model_channels, model_channels),
|
||||
nn.SiLU(),
|
||||
linear(model_channels, model_channels),
|
||||
)
|
||||
|
||||
self.conditioner = nn.Sequential(
|
||||
nn.Conv1d(in_channels, model_channels, 3, padding=1),
|
||||
AttentionBlock(model_channels, num_heads, relative_pos_embeddings=True),
|
||||
AttentionBlock(model_channels, num_heads, relative_pos_embeddings=True),
|
||||
)
|
||||
self.unconditioned_embedding = nn.Parameter(torch.randn(1,model_channels,1))
|
||||
self.conditioning_timestep_integrator = TimestepEmbedSequential(
|
||||
DiffusionLayer(model_channels, dropout, num_heads),
|
||||
DiffusionLayer(model_channels, dropout, num_heads),
|
||||
)
|
||||
self.integrating_conv = nn.Conv1d(model_channels*2, model_channels, kernel_size=1)
|
||||
self.layers = nn.ModuleList([DiffusionLayer(model_channels, dropout, num_heads) for _ in range(num_layers)] +
|
||||
[ResBlock(model_channels, model_channels, dropout, dims=1, use_scale_shift_norm=True) for _ in range(3)])
|
||||
|
||||
self.out = nn.Sequential(
|
||||
normalization(model_channels),
|
||||
nn.SiLU(),
|
||||
zero_module(conv_nd(1, model_channels, out_channels, 3, padding=1)),
|
||||
)
|
||||
|
||||
def get_grad_norm_parameter_groups(self):
|
||||
groups = {
|
||||
'layers': list(self.layers.parameters()),
|
||||
'conditioner': list(self.conditioner.parameters()) + list(self.conditioner.parameters()),
|
||||
'timestep_integrator': list(self.conditioning_timestep_integrator.parameters()) + list(self.integrating_conv.parameters()),
|
||||
'time_embed': list(self.time_embed.parameters()),
|
||||
}
|
||||
return groups
|
||||
|
||||
def do_masking(self, truth):
|
||||
b, c, s = truth.shape
|
||||
mask = torch.ones_like(truth)
|
||||
if self.random() > .5:
|
||||
# Frequency mask
|
||||
cs = random.randint(0, c-10)
|
||||
ce = min(c-1, cs+random.randint(1, int(self.frequency_mask_percent_mask*c)))
|
||||
mask[:, cs:ce] = 0
|
||||
else:
|
||||
# Time mask
|
||||
cs = random.randint(0, s-5)
|
||||
ce = min(s-1, cs+random.randint(1, int(self.frequency_mask_percent_mask*s)))
|
||||
mask[:, :, cs:ce] = 0
|
||||
return truth * mask
|
||||
|
||||
|
||||
def timestep_independent(self, truth):
|
||||
truth_emb = self.conditioner(truth)
|
||||
# Mask out the conditioning branch for whole batch elements, implementing something similar to classifier-free guidance.
|
||||
if self.training and self.unconditioned_percentage > 0:
|
||||
unconditioned_batches = torch.rand((truth_emb.shape[0], 1, 1),
|
||||
device=truth_emb.device) < self.unconditioned_percentage
|
||||
truth_emb = torch.where(unconditioned_batches, self.unconditioned_embedding.repeat(truth.shape[0], 1, 1),
|
||||
truth_emb)
|
||||
return truth_emb
|
||||
|
||||
|
||||
def forward(self, x, timesteps, truth=None, precomputed_aligned_embeddings=None, conditioning_free=False):
|
||||
"""
|
||||
Apply the model to an input batch.
|
||||
|
||||
:param x: an [N x C x ...] Tensor of inputs.
|
||||
:param timesteps: a 1-D batch of timesteps.
|
||||
:param truth: Input value is either pre-masked (in inference), or unmasked (during training)
|
||||
:param precomputed_aligned_embeddings: Embeddings returned from self.timestep_independent()
|
||||
:param conditioning_free: When set, all conditioning inputs (including tokens and conditioning_input) will not be considered.
|
||||
:return: an [N x C x ...] Tensor of outputs.
|
||||
"""
|
||||
assert precomputed_aligned_embeddings is not None or truth is not None
|
||||
|
||||
unused_params = []
|
||||
if conditioning_free:
|
||||
truth_emb = self.unconditioned_embedding.repeat(x.shape[0], 1, x.shape[-1])
|
||||
unused_params.extend(list(self.conditioner.parameters()))
|
||||
else:
|
||||
if precomputed_aligned_embeddings is not None:
|
||||
truth_emb = precomputed_aligned_embeddings
|
||||
else:
|
||||
if self.training:
|
||||
truth = self.do_masking(truth)
|
||||
truth_emb = self.timestep_independent(truth)
|
||||
unused_params.append(self.unconditioned_embedding)
|
||||
|
||||
time_emb = self.time_embed(timestep_embedding(timesteps, self.model_channels))
|
||||
truth_emb = self.conditioning_timestep_integrator(truth_emb, time_emb)
|
||||
x = self.inp_block(x)
|
||||
x = torch.cat([x, truth_emb], dim=1)
|
||||
x = self.integrating_conv(x)
|
||||
for i, lyr in enumerate(self.layers):
|
||||
# Do layer drop where applicable. Do not drop first and last layers.
|
||||
if self.training and self.layer_drop > 0 and i != 0 and i != (len(self.layers)-1) and random.random() < self.layer_drop:
|
||||
unused_params.extend(list(lyr.parameters()))
|
||||
else:
|
||||
# First and last blocks will have autocast disabled for improved precision.
|
||||
with autocast(x.device.type, enabled=self.enable_fp16 and i != 0):
|
||||
x = lyr(x, time_emb)
|
||||
|
||||
x = x.float()
|
||||
out = self.out(x)
|
||||
|
||||
# Involve probabilistic or possibly unused parameters in loss so we don't get DDP errors.
|
||||
extraneous_addition = 0
|
||||
for p in unused_params:
|
||||
extraneous_addition = extraneous_addition + p.mean()
|
||||
out = out + extraneous_addition * 0
|
||||
|
||||
return out
|
||||
|
||||
|
||||
@register_model
|
||||
def register_music_gap_gen(opt_net, opt):
|
||||
return MusicGenerator(**opt_net['kwargs'])
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
clip = torch.randn(2, 100, 400)
|
||||
aligned_latent = torch.randn(2,100,388)
|
||||
ts = torch.LongTensor([600, 600])
|
||||
model = MusicGenerator(512, layer_drop=.3, unconditioned_percentage=.5)
|
||||
o = model(clip, ts, aligned_latent)
|
||||
|
|
@ -1,266 +0,0 @@
|
|||
import random
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from torch import autocast
|
||||
from torchaudio.transforms import TimeMasking, FrequencyMasking
|
||||
|
||||
from models.audio.tts.unified_voice2 import ConditioningEncoder
|
||||
from models.diffusion.nn import timestep_embedding, normalization, zero_module, conv_nd, linear
|
||||
from models.diffusion.unet_diffusion import AttentionBlock, TimestepEmbedSequential, TimestepBlock
|
||||
from models.lucidrains.x_transformers import Encoder
|
||||
from trainer.networks import register_model
|
||||
from utils.util import checkpoint
|
||||
|
||||
def is_sequence(t):
|
||||
return t.dtype == torch.long
|
||||
|
||||
|
||||
class ResBlock(TimestepBlock):
|
||||
def __init__(
|
||||
self,
|
||||
channels,
|
||||
emb_channels,
|
||||
dropout,
|
||||
out_channels=None,
|
||||
dims=2,
|
||||
kernel_size=3,
|
||||
efficient_config=True,
|
||||
use_scale_shift_norm=False,
|
||||
):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.emb_channels = emb_channels
|
||||
self.dropout = dropout
|
||||
self.out_channels = out_channels or channels
|
||||
self.use_scale_shift_norm = use_scale_shift_norm
|
||||
padding = {1: 0, 3: 1, 5: 2}[kernel_size]
|
||||
eff_kernel = 1 if efficient_config else 3
|
||||
eff_padding = 0 if efficient_config else 1
|
||||
|
||||
self.in_layers = nn.Sequential(
|
||||
normalization(channels),
|
||||
nn.SiLU(),
|
||||
conv_nd(dims, channels, self.out_channels, eff_kernel, padding=eff_padding),
|
||||
)
|
||||
|
||||
self.emb_layers = nn.Sequential(
|
||||
nn.SiLU(),
|
||||
linear(
|
||||
emb_channels,
|
||||
2 * self.out_channels if use_scale_shift_norm else self.out_channels,
|
||||
),
|
||||
)
|
||||
self.out_layers = nn.Sequential(
|
||||
normalization(self.out_channels),
|
||||
nn.SiLU(),
|
||||
nn.Dropout(p=dropout),
|
||||
zero_module(
|
||||
conv_nd(dims, self.out_channels, self.out_channels, kernel_size, padding=padding)
|
||||
),
|
||||
)
|
||||
|
||||
if self.out_channels == channels:
|
||||
self.skip_connection = nn.Identity()
|
||||
else:
|
||||
self.skip_connection = conv_nd(dims, channels, self.out_channels, eff_kernel, padding=eff_padding)
|
||||
|
||||
def forward(self, x, emb):
|
||||
"""
|
||||
Apply the block to a Tensor, conditioned on a timestep embedding.
|
||||
|
||||
:param x: an [N x C x ...] Tensor of features.
|
||||
:param emb: an [N x emb_channels] Tensor of timestep embeddings.
|
||||
:return: an [N x C x ...] Tensor of outputs.
|
||||
"""
|
||||
return checkpoint(
|
||||
self._forward, x, emb
|
||||
)
|
||||
|
||||
def _forward(self, x, emb):
|
||||
h = self.in_layers(x)
|
||||
emb_out = self.emb_layers(emb).type(h.dtype)
|
||||
while len(emb_out.shape) < len(h.shape):
|
||||
emb_out = emb_out[..., None]
|
||||
if self.use_scale_shift_norm:
|
||||
out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
|
||||
scale, shift = torch.chunk(emb_out, 2, dim=1)
|
||||
h = out_norm(h) * (1 + scale) + shift
|
||||
h = out_rest(h)
|
||||
else:
|
||||
h = h + emb_out
|
||||
h = self.out_layers(h)
|
||||
return self.skip_connection(x) + h
|
||||
|
||||
|
||||
class DiffusionLayer(TimestepBlock):
|
||||
def __init__(self, model_channels, dropout, num_heads):
|
||||
super().__init__()
|
||||
self.resblk = ResBlock(model_channels, model_channels, dropout, model_channels, dims=1, use_scale_shift_norm=True)
|
||||
self.attn = AttentionBlock(model_channels, num_heads, relative_pos_embeddings=True)
|
||||
|
||||
def forward(self, x, time_emb):
|
||||
y = self.resblk(x, time_emb)
|
||||
return self.attn(y)
|
||||
|
||||
|
||||
class ConditioningEncoder(nn.Module):
|
||||
def __init__(self,
|
||||
spec_dim,
|
||||
embedding_dim,
|
||||
attn_blocks=6):
|
||||
super().__init__()
|
||||
attn = []
|
||||
self.init = nn.Sequential(nn.Conv1d(spec_dim, embedding_dim//2, kernel_size=3, padding=1, stride=2),
|
||||
nn.Conv1d(embedding_dim//2, embedding_dim, kernel_size=3, padding=1, stride=2))
|
||||
self.attn = Encoder(dim=embedding_dim, depth=attn_blocks, use_scalenorm=True, rotary_pos_emb=True,
|
||||
heads=embedding_dim//64, ff_mult=1)
|
||||
self.dim = embedding_dim
|
||||
|
||||
def forward(self, x):
|
||||
h = self.init(x)
|
||||
h = self.attn(h.permute(0,2,1))
|
||||
return h.mean(dim=1)
|
||||
|
||||
|
||||
class MusicGenerator(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
model_channels=512,
|
||||
num_layers=8,
|
||||
in_channels=100,
|
||||
out_channels=200, # mean and variance
|
||||
dropout=0,
|
||||
use_fp16=False,
|
||||
num_heads=16,
|
||||
# Parameters for regularization.
|
||||
layer_drop=.1,
|
||||
unconditioned_percentage=.1, # This implements a mechanism similar to what is used in classifier-free training.
|
||||
# Masking parameters.
|
||||
frequency_mask_percent_max=0.2,
|
||||
time_mask_percent_max=0.2,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.in_channels = in_channels
|
||||
self.model_channels = model_channels
|
||||
self.out_channels = out_channels
|
||||
self.dropout = dropout
|
||||
self.num_heads = num_heads
|
||||
self.unconditioned_percentage = unconditioned_percentage
|
||||
self.enable_fp16 = use_fp16
|
||||
self.layer_drop = layer_drop
|
||||
self.time_mask_percent_max = time_mask_percent_max
|
||||
self.frequency_mask_percent_mask = frequency_mask_percent_max
|
||||
|
||||
self.inp_block = conv_nd(1, in_channels, model_channels, 3, 1, 1)
|
||||
self.time_embed = nn.Sequential(
|
||||
linear(model_channels, model_channels),
|
||||
nn.SiLU(),
|
||||
linear(model_channels, model_channels),
|
||||
)
|
||||
|
||||
self.conditioner = ConditioningEncoder(in_channels, model_channels)
|
||||
self.unconditioned_embedding = nn.Parameter(torch.randn(1, model_channels))
|
||||
self.layers = nn.ModuleList([DiffusionLayer(model_channels, dropout, num_heads) for _ in range(num_layers)] +
|
||||
[ResBlock(model_channels, model_channels, dropout, dims=1, use_scale_shift_norm=True) for _ in range(3)])
|
||||
|
||||
self.out = nn.Sequential(
|
||||
normalization(model_channels),
|
||||
nn.SiLU(),
|
||||
zero_module(conv_nd(1, model_channels, out_channels, 3, padding=1)),
|
||||
)
|
||||
|
||||
def get_grad_norm_parameter_groups(self):
|
||||
groups = {
|
||||
'layers': list(self.layers.parameters()),
|
||||
'conditioner': list(self.conditioner.parameters()),
|
||||
'time_embed': list(self.time_embed.parameters()),
|
||||
}
|
||||
return groups
|
||||
|
||||
def do_masking(self, truth):
|
||||
b, c, s = truth.shape
|
||||
|
||||
# Frequency mask
|
||||
mask_freq = torch.ones_like(truth)
|
||||
cs = random.randint(0, c-10)
|
||||
ce = min(c-1, cs+random.randint(1, int(self.frequency_mask_percent_mask*c)))
|
||||
mask_freq[:, cs:ce] = 0
|
||||
|
||||
# Time mask
|
||||
mask_time = torch.ones_like(truth)
|
||||
cs = random.randint(0, s-5)
|
||||
ce = min(s-1, cs+random.randint(1, int(self.frequency_mask_percent_mask*s)))
|
||||
mask_time[:, :, cs:ce] = 0
|
||||
|
||||
return truth * mask_time * mask_freq
|
||||
|
||||
|
||||
def timestep_independent(self, truth):
|
||||
if self.training:
|
||||
truth = self.do_masking(truth)
|
||||
truth_emb = self.conditioner(truth)
|
||||
return truth_emb
|
||||
|
||||
|
||||
def forward(self, x, timesteps, truth=None, precomputed_aligned_embeddings=None, conditioning_free=False):
|
||||
"""
|
||||
Apply the model to an input batch.
|
||||
|
||||
:param x: an [N x C x ...] Tensor of inputs.
|
||||
:param timesteps: a 1-D batch of timesteps.
|
||||
:param truth: Input value is either pre-masked (in inference), or unmasked (during training)
|
||||
:param precomputed_aligned_embeddings: Embeddings returned from self.timestep_independent()
|
||||
:param conditioning_free: When set, all conditioning inputs (including tokens and conditioning_input) will not be considered.
|
||||
:return: an [N x C x ...] Tensor of outputs.
|
||||
"""
|
||||
assert precomputed_aligned_embeddings is not None or truth is not None
|
||||
|
||||
unused_params = []
|
||||
if conditioning_free:
|
||||
truth_emb = self.unconditioned_embedding
|
||||
unused_params.extend(list(self.conditioner.parameters()))
|
||||
else:
|
||||
if precomputed_aligned_embeddings is not None:
|
||||
truth_emb = precomputed_aligned_embeddings
|
||||
else:
|
||||
truth_emb = self.timestep_independent(truth)
|
||||
unused_params.append(self.unconditioned_embedding)
|
||||
time_emb = self.time_embed(timestep_embedding(timesteps, self.model_channels)) + truth_emb
|
||||
|
||||
x = self.inp_block(x)
|
||||
for i, lyr in enumerate(self.layers):
|
||||
# Do layer drop where applicable. Do not drop first and last layers.
|
||||
if self.training and self.layer_drop > 0 and i != 0 and i != (len(self.layers)-1) and random.random() < self.layer_drop:
|
||||
unused_params.extend(list(lyr.parameters()))
|
||||
else:
|
||||
# First and last blocks will have autocast disabled for improved precision.
|
||||
with autocast(x.device.type, enabled=self.enable_fp16 and i != 0):
|
||||
x = lyr(x, time_emb)
|
||||
|
||||
x = x.float()
|
||||
out = self.out(x)
|
||||
|
||||
# Involve probabilistic or possibly unused parameters in loss so we don't get DDP errors.
|
||||
extraneous_addition = 0
|
||||
for p in unused_params:
|
||||
extraneous_addition = extraneous_addition + p.mean()
|
||||
out = out + extraneous_addition * 0
|
||||
|
||||
return out
|
||||
|
||||
|
||||
@register_model
|
||||
def register_music_gap_gen2(opt_net, opt):
|
||||
return MusicGenerator(**opt_net['kwargs'])
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
clip = torch.randn(2, 100, 400)
|
||||
aligned_latent = torch.randn(2,100,388)
|
||||
ts = torch.LongTensor([600, 600])
|
||||
model = MusicGenerator(512, layer_drop=.3, unconditioned_percentage=.5)
|
||||
o = model(clip, ts, aligned_latent)
|
||||
|
|
@ -197,14 +197,11 @@ class MusicQuantizer(nn.Module):
|
|||
self.code_ind = 0
|
||||
self.total_codes = 0
|
||||
|
||||
def get_codes(self, mel, project=False):
|
||||
proj = self.m2v.input_blocks(mel).permute(0,2,1)
|
||||
_, proj = self.m2v.projector(proj)
|
||||
if project:
|
||||
proj, _ = self.quantizer(proj)
|
||||
return proj
|
||||
else:
|
||||
return self.quantizer.get_codes(proj)
|
||||
def get_codes(self, mel):
|
||||
h = self.down(mel)
|
||||
h = self.encoder(h)
|
||||
h = self.enc_norm(h.permute(0,2,1))
|
||||
return self.quantizer.get_codes(h)
|
||||
|
||||
def forward(self, mel, return_decoder_latent=False):
|
||||
orig_mel = mel
|
||||
|
|
262
codes/models/audio/music/music_quantizer2.py
Normal file
262
codes/models/audio/music/music_quantizer2.py
Normal file
|
@ -0,0 +1,262 @@
|
|||
import functools
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
from models.arch_util import zero_module
|
||||
from models.vqvae.vqvae import Quantize
|
||||
from trainer.networks import register_model
|
||||
from utils.util import checkpoint, ceil_multiple, print_network
|
||||
|
||||
|
||||
class Downsample(nn.Module):
|
||||
def __init__(self, chan_in, chan_out):
|
||||
super().__init__()
|
||||
self.conv = nn.Conv1d(chan_in, chan_out, kernel_size=3, padding=1)
|
||||
|
||||
def forward(self, x):
|
||||
x = F.interpolate(x, scale_factor=.5, mode='linear')
|
||||
x = self.conv(x)
|
||||
return x
|
||||
|
||||
|
||||
class Upsample(nn.Module):
|
||||
def __init__(self, chan_in, chan_out):
|
||||
super().__init__()
|
||||
self.conv = nn.Conv1d(chan_in, chan_out, kernel_size=3, padding=1)
|
||||
|
||||
def forward(self, x):
|
||||
x = F.interpolate(x, scale_factor=2, mode='linear')
|
||||
x = self.conv(x)
|
||||
return x
|
||||
|
||||
|
||||
class ResBlock(nn.Module):
|
||||
def __init__(self, chan):
|
||||
super().__init__()
|
||||
self.net = nn.Sequential(
|
||||
nn.Conv1d(chan, chan, 3, padding = 1),
|
||||
nn.GroupNorm(8, chan),
|
||||
nn.SiLU(),
|
||||
nn.Conv1d(chan, chan, 3, padding = 1),
|
||||
nn.GroupNorm(8, chan),
|
||||
nn.SiLU(),
|
||||
zero_module(nn.Conv1d(chan, chan, 3, padding = 1)),
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
return checkpoint(self._forward, x) + x
|
||||
|
||||
def _forward(self, x):
|
||||
return self.net(x)
|
||||
|
||||
|
||||
class Wav2Vec2GumbelVectorQuantizer(nn.Module):
|
||||
"""
|
||||
Vector quantization using gumbel softmax. See `[CATEGORICAL REPARAMETERIZATION WITH
|
||||
GUMBEL-SOFTMAX](https://arxiv.org/pdf/1611.01144.pdf) for more information.
|
||||
"""
|
||||
|
||||
def __init__(self, proj_dim=1024, codevector_dim=512, num_codevector_groups=2, num_codevectors_per_group=320):
|
||||
super().__init__()
|
||||
self.codevector_dim = codevector_dim
|
||||
self.num_groups = num_codevector_groups
|
||||
self.num_vars = num_codevectors_per_group
|
||||
self.num_codevectors = num_codevector_groups * num_codevectors_per_group
|
||||
|
||||
if codevector_dim % self.num_groups != 0:
|
||||
raise ValueError(
|
||||
f"`codevector_dim {codevector_dim} must be divisible "
|
||||
f"by `num_codevector_groups` {num_codevector_groups} for concatenation"
|
||||
)
|
||||
|
||||
# storage for codebook variables (codewords)
|
||||
self.codevectors = nn.Parameter(
|
||||
torch.FloatTensor(1, self.num_groups * self.num_vars, codevector_dim // self.num_groups)
|
||||
)
|
||||
self.weight_proj = nn.Linear(proj_dim, self.num_groups * self.num_vars)
|
||||
|
||||
# can be decayed for training
|
||||
self.temperature = 2
|
||||
|
||||
# Parameters init.
|
||||
self.weight_proj.weight.data.normal_(mean=0.0, std=1)
|
||||
self.weight_proj.bias.data.zero_()
|
||||
nn.init.uniform_(self.codevectors)
|
||||
|
||||
@staticmethod
|
||||
def _compute_perplexity(probs, mask=None):
|
||||
if mask is not None:
|
||||
mask_extended = mask.flatten()[:, None, None].expand(probs.shape)
|
||||
probs = torch.where(mask_extended, probs, torch.zeros_like(probs))
|
||||
marginal_probs = probs.sum(dim=0) / mask.sum()
|
||||
else:
|
||||
marginal_probs = probs.mean(dim=0)
|
||||
|
||||
perplexity = torch.exp(-torch.sum(marginal_probs * torch.log(marginal_probs + 1e-7), dim=-1)).sum()
|
||||
return perplexity
|
||||
|
||||
def get_codes(self, hidden_states):
|
||||
batch_size, sequence_length, hidden_size = hidden_states.shape
|
||||
|
||||
# project to codevector dim
|
||||
hidden_states = self.weight_proj(hidden_states)
|
||||
hidden_states = hidden_states.view(batch_size * sequence_length * self.num_groups, -1)
|
||||
codevector_idx = hidden_states.argmax(dim=-1)
|
||||
idxs = codevector_idx.view(batch_size, sequence_length, self.num_groups)
|
||||
return idxs
|
||||
|
||||
def forward(self, hidden_states, mask_time_indices=None, return_probs=False):
|
||||
batch_size, sequence_length, hidden_size = hidden_states.shape
|
||||
|
||||
# project to codevector dim
|
||||
hidden_states = self.weight_proj(hidden_states)
|
||||
hidden_states = hidden_states.view(batch_size * sequence_length * self.num_groups, -1)
|
||||
|
||||
if self.training:
|
||||
# sample code vector probs via gumbel in differentiable way
|
||||
codevector_probs = nn.functional.gumbel_softmax(
|
||||
hidden_states.float(), tau=self.temperature, hard=True
|
||||
).type_as(hidden_states)
|
||||
|
||||
# compute perplexity
|
||||
codevector_soft_dist = torch.softmax(
|
||||
hidden_states.view(batch_size * sequence_length, self.num_groups, -1).float(), dim=-1
|
||||
)
|
||||
perplexity = self._compute_perplexity(codevector_soft_dist, mask_time_indices)
|
||||
else:
|
||||
# take argmax in non-differentiable way
|
||||
# compute hard codevector distribution (one hot)
|
||||
codevector_idx = hidden_states.argmax(dim=-1)
|
||||
codevector_probs = hidden_states.new_zeros(*hidden_states.shape).scatter_(
|
||||
-1, codevector_idx.view(-1, 1), 1.0
|
||||
)
|
||||
codevector_probs = codevector_probs.view(batch_size * sequence_length, self.num_groups, -1)
|
||||
|
||||
perplexity = self._compute_perplexity(codevector_probs, mask_time_indices)
|
||||
|
||||
codevector_probs = codevector_probs.view(batch_size * sequence_length, -1)
|
||||
# use probs to retrieve codevectors
|
||||
codevectors_per_group = codevector_probs.unsqueeze(-1) * self.codevectors
|
||||
codevectors = (
|
||||
codevectors_per_group.view(batch_size * sequence_length, self.num_groups, self.num_vars, -1)
|
||||
.sum(-2)
|
||||
.view(batch_size, sequence_length, -1)
|
||||
)
|
||||
|
||||
if return_probs:
|
||||
return codevectors, perplexity, codevector_probs.view(batch_size, sequence_length, self.num_groups, self.num_vars)
|
||||
return codevectors, perplexity
|
||||
|
||||
|
||||
class MusicQuantizer2(nn.Module):
|
||||
def __init__(self, inp_channels=256, inner_dim=1024, codevector_dim=1024, down_steps=2,
|
||||
max_gumbel_temperature=2.0, min_gumbel_temperature=.5, gumbel_temperature_decay=.999995,
|
||||
codebook_size=16, codebook_groups=4):
|
||||
super().__init__()
|
||||
if not isinstance(inner_dim, list):
|
||||
inner_dim = [inner_dim // 2 ** x for x in range(down_steps+1)]
|
||||
self.max_gumbel_temperature = max_gumbel_temperature
|
||||
self.min_gumbel_temperature = min_gumbel_temperature
|
||||
self.gumbel_temperature_decay = gumbel_temperature_decay
|
||||
self.quantizer = Wav2Vec2GumbelVectorQuantizer(inner_dim[0], codevector_dim=codevector_dim,
|
||||
num_codevector_groups=codebook_groups,
|
||||
num_codevectors_per_group=codebook_size)
|
||||
self.codebook_size = codebook_size
|
||||
self.codebook_groups = codebook_groups
|
||||
self.num_losses_record = []
|
||||
|
||||
if down_steps == 0:
|
||||
self.down = nn.Conv1d(inp_channels, inner_dim[0], kernel_size=3, padding=1)
|
||||
self.up = nn.Conv1d(inner_dim[0], inp_channels, kernel_size=3, padding=1)
|
||||
elif down_steps == 2:
|
||||
self.down = nn.Sequential(nn.Conv1d(inp_channels, inner_dim[-1], kernel_size=3, padding=1),
|
||||
*[Downsample(inner_dim[-i], inner_dim[-i-1]) for i in range(1,len(inner_dim))])
|
||||
self.up = nn.Sequential(*[Upsample(inner_dim[i], inner_dim[i+1]) for i in range(len(inner_dim)-1)] +
|
||||
[nn.Conv1d(inner_dim[-1], inp_channels, kernel_size=3, padding=1)])
|
||||
|
||||
self.encoder = nn.Sequential(ResBlock(inner_dim[0]),
|
||||
ResBlock(inner_dim[0]),
|
||||
ResBlock(inner_dim[0]))
|
||||
self.enc_norm = nn.LayerNorm(inner_dim[0], eps=1e-5)
|
||||
self.decoder = nn.Sequential(nn.Conv1d(codevector_dim, inner_dim[0], kernel_size=3, padding=1),
|
||||
ResBlock(inner_dim[0]),
|
||||
ResBlock(inner_dim[0]),
|
||||
ResBlock(inner_dim[0]))
|
||||
|
||||
self.codes = torch.zeros((3000000,), dtype=torch.long)
|
||||
self.internal_step = 0
|
||||
self.code_ind = 0
|
||||
self.total_codes = 0
|
||||
|
||||
def get_codes(self, mel, project=False):
|
||||
proj = self.m2v.input_blocks(mel).permute(0,2,1)
|
||||
_, proj = self.m2v.projector(proj)
|
||||
if project:
|
||||
proj, _ = self.quantizer(proj)
|
||||
return proj
|
||||
else:
|
||||
return self.quantizer.get_codes(proj)
|
||||
|
||||
def forward(self, mel, return_decoder_latent=False):
|
||||
orig_mel = mel
|
||||
cm = ceil_multiple(mel.shape[-1], 2 ** (len(self.down)-1))
|
||||
if cm != 0:
|
||||
mel = F.pad(mel, (0,cm-mel.shape[-1]))
|
||||
|
||||
h = self.down(mel)
|
||||
h = self.encoder(h)
|
||||
h = self.enc_norm(h.permute(0,2,1))
|
||||
codevectors, perplexity, codes = self.quantizer(h, return_probs=True)
|
||||
diversity = (self.quantizer.num_codevectors - perplexity) / self.quantizer.num_codevectors
|
||||
self.log_codes(codes)
|
||||
h = self.decoder(codevectors.permute(0,2,1))
|
||||
if return_decoder_latent:
|
||||
return h, diversity
|
||||
|
||||
reconstructed = self.up(h.float())
|
||||
reconstructed = reconstructed[:, :, :orig_mel.shape[-1]]
|
||||
|
||||
mse = F.mse_loss(reconstructed, orig_mel)
|
||||
return mse, diversity
|
||||
|
||||
def log_codes(self, codes):
|
||||
if self.internal_step % 5 == 0:
|
||||
codes = torch.argmax(codes, dim=-1)
|
||||
ccodes = codes[:,:,0]
|
||||
for j in range(1,codes.shape[-1]):
|
||||
ccodes += codes[:,:,j] * self.codebook_size ** j
|
||||
codes = ccodes
|
||||
codes = codes.flatten()
|
||||
l = codes.shape[0]
|
||||
i = self.code_ind if (self.codes.shape[0] - self.code_ind) > l else self.codes.shape[0] - l
|
||||
self.codes[i:i+l] = codes.cpu()
|
||||
self.code_ind = self.code_ind + l
|
||||
if self.code_ind >= self.codes.shape[0]:
|
||||
self.code_ind = 0
|
||||
self.total_codes += 1
|
||||
|
||||
def get_debug_values(self, step, __):
|
||||
if self.total_codes > 0:
|
||||
return {'histogram_codes': self.codes[:self.total_codes]}
|
||||
else:
|
||||
return {}
|
||||
|
||||
def update_for_step(self, step, *args):
|
||||
self.quantizer.temperature = max(
|
||||
self.max_gumbel_temperature * self.gumbel_temperature_decay**step,
|
||||
self.min_gumbel_temperature,
|
||||
)
|
||||
|
||||
|
||||
@register_model
|
||||
def register_music_quantizer2(opt_net, opt):
|
||||
return MusicQuantizer2(**opt_net['kwargs'])
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
model = MusicQuantizer2(inner_dim=[1024], codevector_dim=1024, codebook_size=256, codebook_groups=2)
|
||||
print_network(model)
|
||||
mel = torch.randn((2,256,782))
|
||||
model(mel)
|
|
@ -2,6 +2,7 @@ import torch
|
|||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
from models.audio.music.music_quantizer2 import MusicQuantizer2
|
||||
from models.diffusion.nn import timestep_embedding, normalization, zero_module, conv_nd, linear
|
||||
from models.diffusion.unet_diffusion import TimestepBlock
|
||||
from models.lucidrains.x_transformers import Encoder, Attention, FeedForward, RMSScaleShiftNorm, RotaryEmbedding
|
||||
|
@ -39,15 +40,16 @@ class TimestepRotaryEmbedSequential(nn.Sequential, TimestepBlock):
|
|||
class DietAttentionBlock(TimestepBlock):
|
||||
def __init__(self, in_dim, dim, heads, dropout):
|
||||
super().__init__()
|
||||
self.rms_scale_norm = RMSScaleShiftNorm(in_dim)
|
||||
self.proj = nn.Linear(in_dim, dim)
|
||||
self.rms_scale_norm = RMSScaleShiftNorm(dim)
|
||||
self.attn = Attention(dim, heads=heads, causal=False, dropout=dropout)
|
||||
self.ff = FeedForward(dim, in_dim, mult=1, dropout=dropout, zero_init_output=True)
|
||||
|
||||
def forward(self, x, timestep_emb, rotary_emb):
|
||||
h = self.proj(x)
|
||||
h = self.rms_scale_norm(h, norm_scale_shift_inp=timestep_emb)
|
||||
h, _, _, _ = checkpoint(self.attn, h, None, None, None, None, None, rotary_emb)
|
||||
h = self.rms_scale_norm(x, norm_scale_shift_inp=timestep_emb)
|
||||
h = self.proj(h)
|
||||
k, _, _, _ = checkpoint(self.attn, h, None, None, None, None, None, rotary_emb)
|
||||
h = k + h
|
||||
h = checkpoint(self.ff, h)
|
||||
return h + x
|
||||
|
||||
|
@ -59,6 +61,7 @@ class TransformerDiffusion(nn.Module):
|
|||
def __init__(
|
||||
self,
|
||||
prenet_channels=256,
|
||||
prenet_layers=3,
|
||||
model_channels=512,
|
||||
block_channels=256,
|
||||
num_layers=8,
|
||||
|
@ -107,7 +110,7 @@ class TransformerDiffusion(nn.Module):
|
|||
self.input_converter = nn.Linear(input_vec_dim, prenet_channels)
|
||||
self.code_converter = Encoder(
|
||||
dim=prenet_channels,
|
||||
depth=3,
|
||||
depth=prenet_layers,
|
||||
heads=prenet_heads,
|
||||
ff_dropout=dropout,
|
||||
attn_dropout=dropout,
|
||||
|
@ -120,7 +123,7 @@ class TransformerDiffusion(nn.Module):
|
|||
|
||||
self.unconditioned_embedding = nn.Parameter(torch.randn(1,1,prenet_channels))
|
||||
self.rotary_embeddings = RotaryEmbedding(rotary_emb_dim)
|
||||
self.cond_intg = nn.Linear(prenet_channels*2, block_channels)
|
||||
self.cond_intg = nn.Linear(prenet_channels*2, model_channels)
|
||||
self.intg = nn.Linear(prenet_channels*2, model_channels)
|
||||
self.layers = TimestepRotaryEmbedSequential(*[DietAttentionBlock(model_channels, block_channels, block_channels // 64, dropout) for _ in range(num_layers)])
|
||||
|
||||
|
@ -164,8 +167,10 @@ class TransformerDiffusion(nn.Module):
|
|||
|
||||
unused_params = []
|
||||
if conditioning_free:
|
||||
code_emb = self.unconditioned_embedding.repeat(x.shape[0], 1, x.shape[-1])
|
||||
unused_params.extend(list(self.code_converter.parameters()) + list(self.code_embedding.parameters()))
|
||||
code_emb = self.unconditioned_embedding.repeat(x.shape[0], x.shape[-1], 1)
|
||||
cond_emb = self.conditioning_embedder(conditioning_input).permute(0,2,1)
|
||||
cond_emb = self.conditioning_encoder(cond_emb)[:, 0]
|
||||
unused_params.extend(list(self.code_converter.parameters()))
|
||||
else:
|
||||
if precomputed_code_embeddings is not None:
|
||||
code_emb = precomputed_code_embeddings
|
||||
|
@ -195,18 +200,87 @@ class TransformerDiffusion(nn.Module):
|
|||
return out
|
||||
|
||||
|
||||
class TransformerDiffusionWithQuantizer(nn.Module):
|
||||
def __init__(self, freeze_quantizer_until=20000, **kwargs):
|
||||
super().__init__()
|
||||
|
||||
self.internal_step = 0
|
||||
self.freeze_quantizer_until = freeze_quantizer_until
|
||||
self.diff = TransformerDiffusion(**kwargs)
|
||||
self.quantizer = MusicQuantizer2(inp_channels=256, inner_dim=[1024], codevector_dim=1024, codebook_size=256,
|
||||
codebook_groups=2, max_gumbel_temperature=4, min_gumbel_temperature=.5)
|
||||
self.quantizer.quantizer.temperature = self.quantizer.min_gumbel_temperature
|
||||
del self.quantizer.up
|
||||
|
||||
def update_for_step(self, step, *args):
|
||||
self.internal_step = step
|
||||
qstep = max(0, self.internal_step - self.freeze_quantizer_until)
|
||||
self.quantizer.quantizer.temperature = max(
|
||||
self.quantizer.max_gumbel_temperature * self.quantizer.gumbel_temperature_decay ** qstep,
|
||||
self.quantizer.min_gumbel_temperature,
|
||||
)
|
||||
|
||||
def forward(self, x, timesteps, truth_mel, conditioning_input, disable_diversity=False, conditioning_free=False):
|
||||
quant_grad_enabled = self.internal_step > self.freeze_quantizer_until
|
||||
with torch.set_grad_enabled(quant_grad_enabled):
|
||||
proj, diversity_loss = self.quantizer(truth_mel, return_decoder_latent=True)
|
||||
proj = proj.permute(0,2,1)
|
||||
|
||||
# Make sure this does not cause issues in DDP by explicitly using the parameters for nothing.
|
||||
if not quant_grad_enabled:
|
||||
unused = 0
|
||||
for p in self.quantizer.parameters():
|
||||
unused = unused + p.mean() * 0
|
||||
proj = proj + unused
|
||||
diversity_loss = diversity_loss * 0
|
||||
|
||||
diff = self.diff(x, timesteps, codes=proj, conditioning_input=conditioning_input, conditioning_free=conditioning_free)
|
||||
if disable_diversity:
|
||||
return diff
|
||||
return diff, diversity_loss
|
||||
|
||||
def get_debug_values(self, step, __):
|
||||
if self.quantizer.total_codes > 0:
|
||||
return {'histogram_codes': self.quantizer.codes[:self.quantizer.total_codes]}
|
||||
else:
|
||||
return {}
|
||||
|
||||
|
||||
@register_model
|
||||
def register_transformer_diffusion6(opt_net, opt):
|
||||
def register_transformer_diffusion8(opt_net, opt):
|
||||
return TransformerDiffusion(**opt_net['kwargs'])
|
||||
|
||||
|
||||
@register_model
|
||||
def register_transformer_diffusion8_with_quantizer(opt_net, opt):
|
||||
return TransformerDiffusionWithQuantizer(**opt_net['kwargs'])
|
||||
|
||||
|
||||
"""
|
||||
# For TFD5
|
||||
if __name__ == '__main__':
|
||||
clip = torch.randn(2, 256, 400)
|
||||
aligned_sequence = torch.randn(2,100,512)
|
||||
cond = torch.randn(2, 256, 400)
|
||||
ts = torch.LongTensor([600, 600])
|
||||
model = TransformerDiffusion(model_channels=4096, block_channels=2048, prenet_channels=1024, num_layers=16)
|
||||
model = TransformerDiffusion(model_channels=3072, block_channels=1536, prenet_channels=1536)
|
||||
torch.save(model, 'sample.pth')
|
||||
print_network(model)
|
||||
o = model(clip, ts, aligned_sequence, cond)
|
||||
"""
|
||||
|
||||
if __name__ == '__main__':
|
||||
clip = torch.randn(2, 256, 400)
|
||||
cond = torch.randn(2, 256, 400)
|
||||
ts = torch.LongTensor([600, 600])
|
||||
model = TransformerDiffusionWithQuantizer(model_channels=2048, block_channels=1024, prenet_channels=1024, input_vec_dim=1024, num_layers=16, prenet_layers=6)
|
||||
|
||||
#quant_weights = torch.load('D:\\dlas\\experiments\\train_music_quant\\models\\18000_generator_ema.pth')
|
||||
#diff_weights = torch.load('X:\\dlas\\experiments\\train_music_diffusion_tfd5\\models\\48000_generator_ema.pth')
|
||||
#model.quantizer.load_state_dict(quant_weights, strict=False)
|
||||
#model.diff.load_state_dict(diff_weights)
|
||||
|
||||
torch.save(model.state_dict(), 'sample.pth')
|
||||
print_network(model)
|
||||
o = model(clip, ts, clip, cond)
|
||||
|
|
@ -530,12 +530,12 @@ class UNetMusicModel(nn.Module):
|
|||
ch,
|
||||
time_embed_dim,
|
||||
dropout,
|
||||
out_channels=mult * model_channels,
|
||||
out_channels=int(mult * model_channels),
|
||||
dims=dims,
|
||||
use_scale_shift_norm=use_scale_shift_norm,
|
||||
)
|
||||
]
|
||||
ch = mult * model_channels
|
||||
ch = int(mult * model_channels)
|
||||
if ds in attention_resolutions:
|
||||
layers.append(
|
||||
AttentionBlock(
|
||||
|
@ -605,12 +605,12 @@ class UNetMusicModel(nn.Module):
|
|||
ch + ich,
|
||||
time_embed_dim,
|
||||
dropout,
|
||||
out_channels=model_channels * mult,
|
||||
out_channels=int(model_channels * mult),
|
||||
dims=dims,
|
||||
use_scale_shift_norm=use_scale_shift_norm,
|
||||
)
|
||||
]
|
||||
ch = model_channels * mult
|
||||
ch = int(model_channels * mult)
|
||||
if ds in attention_resolutions:
|
||||
layers.append(
|
||||
AttentionBlock(
|
||||
|
@ -749,9 +749,9 @@ if __name__ == '__main__':
|
|||
clip = torch.randn(2, 256, 782)
|
||||
cond = torch.randn(2, 256, 782)
|
||||
ts = torch.LongTensor([600, 600])
|
||||
model = UNetMusicModelWithQuantizer(in_channels=256, out_channels=512, model_channels=640, num_res_blocks=3, input_vec_dim=1024,
|
||||
attention_resolutions=(2,4), channel_mult=(1,2,3), dims=1,
|
||||
use_scale_shift_norm=True, dropout=.1, num_heads=8, unconditioned_percentage=.4)
|
||||
model = UNetMusicModelWithQuantizer(in_channels=256, out_channels=512, model_channels=1024, num_res_blocks=3, input_vec_dim=1024,
|
||||
attention_resolutions=(2,4), channel_mult=(1,1.5,2), dims=1,
|
||||
use_scale_shift_norm=True, dropout=.1, num_heads=16, unconditioned_percentage=.4)
|
||||
print_network(model)
|
||||
|
||||
quant_weights = torch.load('D:\\dlas\\experiments\\train_music_quant\\models\\18000_generator_ema.pth')
|
||||
|
|
|
@ -328,7 +328,7 @@ class Mel2vecCodesInjector(Injector):
|
|||
def __init__(self, opt, env):
|
||||
super().__init__(opt, env)
|
||||
self.m2v = get_music_codegen()
|
||||
del self.m2v.m2v.encoder # This is a big memory sink which will not get used.
|
||||
del self.m2v.quantizer.encoder # This is a big memory sink which will not get used.
|
||||
self.needs_move = True
|
||||
self.inj_vector = opt_get(opt, ['vector'], False)
|
||||
|
||||
|
|
Loading…
Reference in New Issue
Block a user