bunch of new stuff

This commit is contained in:
James Betker 2022-06-04 22:23:08 -06:00
parent 8f8b189025
commit 0a9d4d4afc
8 changed files with 423 additions and 554 deletions

View File

@ -0,0 +1,64 @@
import torch
from torch import nn
import torch.nn.functional as F
from transformers import GPT2Config, GPT2Model
from models.audio.music.music_quantizer import MusicQuantizer
from models.audio.music.music_quantizer2 import MusicQuantizer2
from trainer.networks import register_model
from utils.util import opt_get
class GptMusic(nn.Module):
def __init__(self, dim, layers, num_target_vectors=512, num_target_groups=2, cv_dim=1024, num_upper_vectors=64, num_upper_groups=4):
super().__init__()
self.num_groups = num_target_groups
self.config = GPT2Config(vocab_size=1, n_positions=8192, n_embd=dim, n_layer=layers, n_head=dim//64,
n_inner=dim*2)
self.target_quantizer = MusicQuantizer(inp_channels=256, inner_dim=[1024,1024,512], codevector_dim=cv_dim, codebook_size=num_target_vectors, codebook_groups=num_target_groups)
del self.target_quantizer.decoder
del self.target_quantizer.up
self.upper_quantizer = MusicQuantizer2(inp_channels=256, inner_dim=[1024,896,768,640,512,384], codevector_dim=cv_dim, codebook_size=num_upper_vectors, codebook_groups=num_upper_groups)
del self.upper_quantizer.up
self.gpt = GPT2Model(self.config)
del self.gpt.wte # Unused, we'll do our own embeddings.
self.embeddings = nn.ModuleList([nn.Embedding(num_target_vectors, dim // num_target_groups) for _ in range(num_target_groups)])
self.upper_proj = nn.Conv1d(cv_dim, dim, kernel_size=1)
self.heads = nn.ModuleList([nn.Linear(dim, num_target_vectors) for _ in range(num_target_groups)])
def forward(self, mel):
with torch.no_grad():
self.target_quantizer.eval()
codes = self.target_quantizer.get_codes(mel)
upper_vector, upper_diversity = self.upper_quantizer(mel, return_decoder_latent=True)
upper_vector = self.upper_proj(upper_vector)
upper_vector = F.interpolate(upper_vector, size=codes.shape[1], mode='linear')
upper_vector = upper_vector.permute(0,2,1)
inputs = codes[:, :-1]
upper_vector = upper_vector[:, :-1]
targets = codes[:, 1:]
h = [embedding(inputs[:, :, i]) for i, embedding in enumerate(self.embeddings)]
h = torch.cat(h, dim=-1) + upper_vector
h = self.gpt(inputs_embeds=h, return_dict=True).last_hidden_state
losses = 0
for i, head in enumerate(self.heads):
logits = head(h).permute(0,2,1)
loss = F.cross_entropy(logits, targets[:,:,i])
losses = losses + loss
return losses / self.num_groups
@register_model
def register_music_gpt(opt_net, opt):
return GptMusic(**opt_get(opt_net, ['kwargs'], {}))
if __name__ == '__main__':
model = GptMusic(512, 12)
mel = torch.randn(2,256,400)
model(mel)

View File

@ -1,262 +0,0 @@
import random
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import autocast
from torchaudio.transforms import TimeMasking, FrequencyMasking
from models.diffusion.nn import timestep_embedding, normalization, zero_module, conv_nd, linear
from models.diffusion.unet_diffusion import AttentionBlock, TimestepEmbedSequential, TimestepBlock
from trainer.networks import register_model
from utils.util import checkpoint
def is_sequence(t):
return t.dtype == torch.long
class ResBlock(TimestepBlock):
def __init__(
self,
channels,
emb_channels,
dropout,
out_channels=None,
dims=2,
kernel_size=3,
efficient_config=True,
use_scale_shift_norm=False,
):
super().__init__()
self.channels = channels
self.emb_channels = emb_channels
self.dropout = dropout
self.out_channels = out_channels or channels
self.use_scale_shift_norm = use_scale_shift_norm
padding = {1: 0, 3: 1, 5: 2}[kernel_size]
eff_kernel = 1 if efficient_config else 3
eff_padding = 0 if efficient_config else 1
self.in_layers = nn.Sequential(
normalization(channels),
nn.SiLU(),
conv_nd(dims, channels, self.out_channels, eff_kernel, padding=eff_padding),
)
self.emb_layers = nn.Sequential(
nn.SiLU(),
linear(
emb_channels,
2 * self.out_channels if use_scale_shift_norm else self.out_channels,
),
)
self.out_layers = nn.Sequential(
normalization(self.out_channels),
nn.SiLU(),
nn.Dropout(p=dropout),
zero_module(
conv_nd(dims, self.out_channels, self.out_channels, kernel_size, padding=padding)
),
)
if self.out_channels == channels:
self.skip_connection = nn.Identity()
else:
self.skip_connection = conv_nd(dims, channels, self.out_channels, eff_kernel, padding=eff_padding)
def forward(self, x, emb):
"""
Apply the block to a Tensor, conditioned on a timestep embedding.
:param x: an [N x C x ...] Tensor of features.
:param emb: an [N x emb_channels] Tensor of timestep embeddings.
:return: an [N x C x ...] Tensor of outputs.
"""
return checkpoint(
self._forward, x, emb
)
def _forward(self, x, emb):
h = self.in_layers(x)
emb_out = self.emb_layers(emb).type(h.dtype)
while len(emb_out.shape) < len(h.shape):
emb_out = emb_out[..., None]
if self.use_scale_shift_norm:
out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
scale, shift = torch.chunk(emb_out, 2, dim=1)
h = out_norm(h) * (1 + scale) + shift
h = out_rest(h)
else:
h = h + emb_out
h = self.out_layers(h)
return self.skip_connection(x) + h
class DiffusionLayer(TimestepBlock):
def __init__(self, model_channels, dropout, num_heads):
super().__init__()
self.resblk = ResBlock(model_channels, model_channels, dropout, model_channels, dims=1, use_scale_shift_norm=True)
self.attn = AttentionBlock(model_channels, num_heads, relative_pos_embeddings=True)
def forward(self, x, time_emb):
y = self.resblk(x, time_emb)
return self.attn(y)
class MusicGenerator(nn.Module):
def __init__(
self,
model_channels=512,
num_layers=8,
in_channels=100,
out_channels=200, # mean and variance
dropout=0,
use_fp16=False,
num_heads=16,
# Parameters for regularization.
layer_drop=.1,
unconditioned_percentage=.1, # This implements a mechanism similar to what is used in classifier-free training.
# Masking parameters.
frequency_mask_percent_max=0,
time_mask_percent_max=0,
):
super().__init__()
self.in_channels = in_channels
self.model_channels = model_channels
self.out_channels = out_channels
self.dropout = dropout
self.num_heads = num_heads
self.unconditioned_percentage = unconditioned_percentage
self.enable_fp16 = use_fp16
self.layer_drop = layer_drop
self.time_mask_percent_max = time_mask_percent_max
self.frequency_mask_percent_mask = frequency_mask_percent_max
self.inp_block = conv_nd(1, in_channels, model_channels, 3, 1, 1)
self.time_embed = nn.Sequential(
linear(model_channels, model_channels),
nn.SiLU(),
linear(model_channels, model_channels),
)
self.conditioner = nn.Sequential(
nn.Conv1d(in_channels, model_channels, 3, padding=1),
AttentionBlock(model_channels, num_heads, relative_pos_embeddings=True),
AttentionBlock(model_channels, num_heads, relative_pos_embeddings=True),
)
self.unconditioned_embedding = nn.Parameter(torch.randn(1,model_channels,1))
self.conditioning_timestep_integrator = TimestepEmbedSequential(
DiffusionLayer(model_channels, dropout, num_heads),
DiffusionLayer(model_channels, dropout, num_heads),
)
self.integrating_conv = nn.Conv1d(model_channels*2, model_channels, kernel_size=1)
self.layers = nn.ModuleList([DiffusionLayer(model_channels, dropout, num_heads) for _ in range(num_layers)] +
[ResBlock(model_channels, model_channels, dropout, dims=1, use_scale_shift_norm=True) for _ in range(3)])
self.out = nn.Sequential(
normalization(model_channels),
nn.SiLU(),
zero_module(conv_nd(1, model_channels, out_channels, 3, padding=1)),
)
def get_grad_norm_parameter_groups(self):
groups = {
'layers': list(self.layers.parameters()),
'conditioner': list(self.conditioner.parameters()) + list(self.conditioner.parameters()),
'timestep_integrator': list(self.conditioning_timestep_integrator.parameters()) + list(self.integrating_conv.parameters()),
'time_embed': list(self.time_embed.parameters()),
}
return groups
def do_masking(self, truth):
b, c, s = truth.shape
mask = torch.ones_like(truth)
if self.random() > .5:
# Frequency mask
cs = random.randint(0, c-10)
ce = min(c-1, cs+random.randint(1, int(self.frequency_mask_percent_mask*c)))
mask[:, cs:ce] = 0
else:
# Time mask
cs = random.randint(0, s-5)
ce = min(s-1, cs+random.randint(1, int(self.frequency_mask_percent_mask*s)))
mask[:, :, cs:ce] = 0
return truth * mask
def timestep_independent(self, truth):
truth_emb = self.conditioner(truth)
# Mask out the conditioning branch for whole batch elements, implementing something similar to classifier-free guidance.
if self.training and self.unconditioned_percentage > 0:
unconditioned_batches = torch.rand((truth_emb.shape[0], 1, 1),
device=truth_emb.device) < self.unconditioned_percentage
truth_emb = torch.where(unconditioned_batches, self.unconditioned_embedding.repeat(truth.shape[0], 1, 1),
truth_emb)
return truth_emb
def forward(self, x, timesteps, truth=None, precomputed_aligned_embeddings=None, conditioning_free=False):
"""
Apply the model to an input batch.
:param x: an [N x C x ...] Tensor of inputs.
:param timesteps: a 1-D batch of timesteps.
:param truth: Input value is either pre-masked (in inference), or unmasked (during training)
:param precomputed_aligned_embeddings: Embeddings returned from self.timestep_independent()
:param conditioning_free: When set, all conditioning inputs (including tokens and conditioning_input) will not be considered.
:return: an [N x C x ...] Tensor of outputs.
"""
assert precomputed_aligned_embeddings is not None or truth is not None
unused_params = []
if conditioning_free:
truth_emb = self.unconditioned_embedding.repeat(x.shape[0], 1, x.shape[-1])
unused_params.extend(list(self.conditioner.parameters()))
else:
if precomputed_aligned_embeddings is not None:
truth_emb = precomputed_aligned_embeddings
else:
if self.training:
truth = self.do_masking(truth)
truth_emb = self.timestep_independent(truth)
unused_params.append(self.unconditioned_embedding)
time_emb = self.time_embed(timestep_embedding(timesteps, self.model_channels))
truth_emb = self.conditioning_timestep_integrator(truth_emb, time_emb)
x = self.inp_block(x)
x = torch.cat([x, truth_emb], dim=1)
x = self.integrating_conv(x)
for i, lyr in enumerate(self.layers):
# Do layer drop where applicable. Do not drop first and last layers.
if self.training and self.layer_drop > 0 and i != 0 and i != (len(self.layers)-1) and random.random() < self.layer_drop:
unused_params.extend(list(lyr.parameters()))
else:
# First and last blocks will have autocast disabled for improved precision.
with autocast(x.device.type, enabled=self.enable_fp16 and i != 0):
x = lyr(x, time_emb)
x = x.float()
out = self.out(x)
# Involve probabilistic or possibly unused parameters in loss so we don't get DDP errors.
extraneous_addition = 0
for p in unused_params:
extraneous_addition = extraneous_addition + p.mean()
out = out + extraneous_addition * 0
return out
@register_model
def register_music_gap_gen(opt_net, opt):
return MusicGenerator(**opt_net['kwargs'])
if __name__ == '__main__':
clip = torch.randn(2, 100, 400)
aligned_latent = torch.randn(2,100,388)
ts = torch.LongTensor([600, 600])
model = MusicGenerator(512, layer_drop=.3, unconditioned_percentage=.5)
o = model(clip, ts, aligned_latent)

View File

@ -1,266 +0,0 @@
import random
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import autocast
from torchaudio.transforms import TimeMasking, FrequencyMasking
from models.audio.tts.unified_voice2 import ConditioningEncoder
from models.diffusion.nn import timestep_embedding, normalization, zero_module, conv_nd, linear
from models.diffusion.unet_diffusion import AttentionBlock, TimestepEmbedSequential, TimestepBlock
from models.lucidrains.x_transformers import Encoder
from trainer.networks import register_model
from utils.util import checkpoint
def is_sequence(t):
return t.dtype == torch.long
class ResBlock(TimestepBlock):
def __init__(
self,
channels,
emb_channels,
dropout,
out_channels=None,
dims=2,
kernel_size=3,
efficient_config=True,
use_scale_shift_norm=False,
):
super().__init__()
self.channels = channels
self.emb_channels = emb_channels
self.dropout = dropout
self.out_channels = out_channels or channels
self.use_scale_shift_norm = use_scale_shift_norm
padding = {1: 0, 3: 1, 5: 2}[kernel_size]
eff_kernel = 1 if efficient_config else 3
eff_padding = 0 if efficient_config else 1
self.in_layers = nn.Sequential(
normalization(channels),
nn.SiLU(),
conv_nd(dims, channels, self.out_channels, eff_kernel, padding=eff_padding),
)
self.emb_layers = nn.Sequential(
nn.SiLU(),
linear(
emb_channels,
2 * self.out_channels if use_scale_shift_norm else self.out_channels,
),
)
self.out_layers = nn.Sequential(
normalization(self.out_channels),
nn.SiLU(),
nn.Dropout(p=dropout),
zero_module(
conv_nd(dims, self.out_channels, self.out_channels, kernel_size, padding=padding)
),
)
if self.out_channels == channels:
self.skip_connection = nn.Identity()
else:
self.skip_connection = conv_nd(dims, channels, self.out_channels, eff_kernel, padding=eff_padding)
def forward(self, x, emb):
"""
Apply the block to a Tensor, conditioned on a timestep embedding.
:param x: an [N x C x ...] Tensor of features.
:param emb: an [N x emb_channels] Tensor of timestep embeddings.
:return: an [N x C x ...] Tensor of outputs.
"""
return checkpoint(
self._forward, x, emb
)
def _forward(self, x, emb):
h = self.in_layers(x)
emb_out = self.emb_layers(emb).type(h.dtype)
while len(emb_out.shape) < len(h.shape):
emb_out = emb_out[..., None]
if self.use_scale_shift_norm:
out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
scale, shift = torch.chunk(emb_out, 2, dim=1)
h = out_norm(h) * (1 + scale) + shift
h = out_rest(h)
else:
h = h + emb_out
h = self.out_layers(h)
return self.skip_connection(x) + h
class DiffusionLayer(TimestepBlock):
def __init__(self, model_channels, dropout, num_heads):
super().__init__()
self.resblk = ResBlock(model_channels, model_channels, dropout, model_channels, dims=1, use_scale_shift_norm=True)
self.attn = AttentionBlock(model_channels, num_heads, relative_pos_embeddings=True)
def forward(self, x, time_emb):
y = self.resblk(x, time_emb)
return self.attn(y)
class ConditioningEncoder(nn.Module):
def __init__(self,
spec_dim,
embedding_dim,
attn_blocks=6):
super().__init__()
attn = []
self.init = nn.Sequential(nn.Conv1d(spec_dim, embedding_dim//2, kernel_size=3, padding=1, stride=2),
nn.Conv1d(embedding_dim//2, embedding_dim, kernel_size=3, padding=1, stride=2))
self.attn = Encoder(dim=embedding_dim, depth=attn_blocks, use_scalenorm=True, rotary_pos_emb=True,
heads=embedding_dim//64, ff_mult=1)
self.dim = embedding_dim
def forward(self, x):
h = self.init(x)
h = self.attn(h.permute(0,2,1))
return h.mean(dim=1)
class MusicGenerator(nn.Module):
def __init__(
self,
model_channels=512,
num_layers=8,
in_channels=100,
out_channels=200, # mean and variance
dropout=0,
use_fp16=False,
num_heads=16,
# Parameters for regularization.
layer_drop=.1,
unconditioned_percentage=.1, # This implements a mechanism similar to what is used in classifier-free training.
# Masking parameters.
frequency_mask_percent_max=0.2,
time_mask_percent_max=0.2,
):
super().__init__()
self.in_channels = in_channels
self.model_channels = model_channels
self.out_channels = out_channels
self.dropout = dropout
self.num_heads = num_heads
self.unconditioned_percentage = unconditioned_percentage
self.enable_fp16 = use_fp16
self.layer_drop = layer_drop
self.time_mask_percent_max = time_mask_percent_max
self.frequency_mask_percent_mask = frequency_mask_percent_max
self.inp_block = conv_nd(1, in_channels, model_channels, 3, 1, 1)
self.time_embed = nn.Sequential(
linear(model_channels, model_channels),
nn.SiLU(),
linear(model_channels, model_channels),
)
self.conditioner = ConditioningEncoder(in_channels, model_channels)
self.unconditioned_embedding = nn.Parameter(torch.randn(1, model_channels))
self.layers = nn.ModuleList([DiffusionLayer(model_channels, dropout, num_heads) for _ in range(num_layers)] +
[ResBlock(model_channels, model_channels, dropout, dims=1, use_scale_shift_norm=True) for _ in range(3)])
self.out = nn.Sequential(
normalization(model_channels),
nn.SiLU(),
zero_module(conv_nd(1, model_channels, out_channels, 3, padding=1)),
)
def get_grad_norm_parameter_groups(self):
groups = {
'layers': list(self.layers.parameters()),
'conditioner': list(self.conditioner.parameters()),
'time_embed': list(self.time_embed.parameters()),
}
return groups
def do_masking(self, truth):
b, c, s = truth.shape
# Frequency mask
mask_freq = torch.ones_like(truth)
cs = random.randint(0, c-10)
ce = min(c-1, cs+random.randint(1, int(self.frequency_mask_percent_mask*c)))
mask_freq[:, cs:ce] = 0
# Time mask
mask_time = torch.ones_like(truth)
cs = random.randint(0, s-5)
ce = min(s-1, cs+random.randint(1, int(self.frequency_mask_percent_mask*s)))
mask_time[:, :, cs:ce] = 0
return truth * mask_time * mask_freq
def timestep_independent(self, truth):
if self.training:
truth = self.do_masking(truth)
truth_emb = self.conditioner(truth)
return truth_emb
def forward(self, x, timesteps, truth=None, precomputed_aligned_embeddings=None, conditioning_free=False):
"""
Apply the model to an input batch.
:param x: an [N x C x ...] Tensor of inputs.
:param timesteps: a 1-D batch of timesteps.
:param truth: Input value is either pre-masked (in inference), or unmasked (during training)
:param precomputed_aligned_embeddings: Embeddings returned from self.timestep_independent()
:param conditioning_free: When set, all conditioning inputs (including tokens and conditioning_input) will not be considered.
:return: an [N x C x ...] Tensor of outputs.
"""
assert precomputed_aligned_embeddings is not None or truth is not None
unused_params = []
if conditioning_free:
truth_emb = self.unconditioned_embedding
unused_params.extend(list(self.conditioner.parameters()))
else:
if precomputed_aligned_embeddings is not None:
truth_emb = precomputed_aligned_embeddings
else:
truth_emb = self.timestep_independent(truth)
unused_params.append(self.unconditioned_embedding)
time_emb = self.time_embed(timestep_embedding(timesteps, self.model_channels)) + truth_emb
x = self.inp_block(x)
for i, lyr in enumerate(self.layers):
# Do layer drop where applicable. Do not drop first and last layers.
if self.training and self.layer_drop > 0 and i != 0 and i != (len(self.layers)-1) and random.random() < self.layer_drop:
unused_params.extend(list(lyr.parameters()))
else:
# First and last blocks will have autocast disabled for improved precision.
with autocast(x.device.type, enabled=self.enable_fp16 and i != 0):
x = lyr(x, time_emb)
x = x.float()
out = self.out(x)
# Involve probabilistic or possibly unused parameters in loss so we don't get DDP errors.
extraneous_addition = 0
for p in unused_params:
extraneous_addition = extraneous_addition + p.mean()
out = out + extraneous_addition * 0
return out
@register_model
def register_music_gap_gen2(opt_net, opt):
return MusicGenerator(**opt_net['kwargs'])
if __name__ == '__main__':
clip = torch.randn(2, 100, 400)
aligned_latent = torch.randn(2,100,388)
ts = torch.LongTensor([600, 600])
model = MusicGenerator(512, layer_drop=.3, unconditioned_percentage=.5)
o = model(clip, ts, aligned_latent)

View File

@ -197,14 +197,11 @@ class MusicQuantizer(nn.Module):
self.code_ind = 0 self.code_ind = 0
self.total_codes = 0 self.total_codes = 0
def get_codes(self, mel, project=False): def get_codes(self, mel):
proj = self.m2v.input_blocks(mel).permute(0,2,1) h = self.down(mel)
_, proj = self.m2v.projector(proj) h = self.encoder(h)
if project: h = self.enc_norm(h.permute(0,2,1))
proj, _ = self.quantizer(proj) return self.quantizer.get_codes(h)
return proj
else:
return self.quantizer.get_codes(proj)
def forward(self, mel, return_decoder_latent=False): def forward(self, mel, return_decoder_latent=False):
orig_mel = mel orig_mel = mel

View File

@ -0,0 +1,262 @@
import functools
import torch
from torch import nn
import torch.nn.functional as F
from models.arch_util import zero_module
from models.vqvae.vqvae import Quantize
from trainer.networks import register_model
from utils.util import checkpoint, ceil_multiple, print_network
class Downsample(nn.Module):
def __init__(self, chan_in, chan_out):
super().__init__()
self.conv = nn.Conv1d(chan_in, chan_out, kernel_size=3, padding=1)
def forward(self, x):
x = F.interpolate(x, scale_factor=.5, mode='linear')
x = self.conv(x)
return x
class Upsample(nn.Module):
def __init__(self, chan_in, chan_out):
super().__init__()
self.conv = nn.Conv1d(chan_in, chan_out, kernel_size=3, padding=1)
def forward(self, x):
x = F.interpolate(x, scale_factor=2, mode='linear')
x = self.conv(x)
return x
class ResBlock(nn.Module):
def __init__(self, chan):
super().__init__()
self.net = nn.Sequential(
nn.Conv1d(chan, chan, 3, padding = 1),
nn.GroupNorm(8, chan),
nn.SiLU(),
nn.Conv1d(chan, chan, 3, padding = 1),
nn.GroupNorm(8, chan),
nn.SiLU(),
zero_module(nn.Conv1d(chan, chan, 3, padding = 1)),
)
def forward(self, x):
return checkpoint(self._forward, x) + x
def _forward(self, x):
return self.net(x)
class Wav2Vec2GumbelVectorQuantizer(nn.Module):
"""
Vector quantization using gumbel softmax. See `[CATEGORICAL REPARAMETERIZATION WITH
GUMBEL-SOFTMAX](https://arxiv.org/pdf/1611.01144.pdf) for more information.
"""
def __init__(self, proj_dim=1024, codevector_dim=512, num_codevector_groups=2, num_codevectors_per_group=320):
super().__init__()
self.codevector_dim = codevector_dim
self.num_groups = num_codevector_groups
self.num_vars = num_codevectors_per_group
self.num_codevectors = num_codevector_groups * num_codevectors_per_group
if codevector_dim % self.num_groups != 0:
raise ValueError(
f"`codevector_dim {codevector_dim} must be divisible "
f"by `num_codevector_groups` {num_codevector_groups} for concatenation"
)
# storage for codebook variables (codewords)
self.codevectors = nn.Parameter(
torch.FloatTensor(1, self.num_groups * self.num_vars, codevector_dim // self.num_groups)
)
self.weight_proj = nn.Linear(proj_dim, self.num_groups * self.num_vars)
# can be decayed for training
self.temperature = 2
# Parameters init.
self.weight_proj.weight.data.normal_(mean=0.0, std=1)
self.weight_proj.bias.data.zero_()
nn.init.uniform_(self.codevectors)
@staticmethod
def _compute_perplexity(probs, mask=None):
if mask is not None:
mask_extended = mask.flatten()[:, None, None].expand(probs.shape)
probs = torch.where(mask_extended, probs, torch.zeros_like(probs))
marginal_probs = probs.sum(dim=0) / mask.sum()
else:
marginal_probs = probs.mean(dim=0)
perplexity = torch.exp(-torch.sum(marginal_probs * torch.log(marginal_probs + 1e-7), dim=-1)).sum()
return perplexity
def get_codes(self, hidden_states):
batch_size, sequence_length, hidden_size = hidden_states.shape
# project to codevector dim
hidden_states = self.weight_proj(hidden_states)
hidden_states = hidden_states.view(batch_size * sequence_length * self.num_groups, -1)
codevector_idx = hidden_states.argmax(dim=-1)
idxs = codevector_idx.view(batch_size, sequence_length, self.num_groups)
return idxs
def forward(self, hidden_states, mask_time_indices=None, return_probs=False):
batch_size, sequence_length, hidden_size = hidden_states.shape
# project to codevector dim
hidden_states = self.weight_proj(hidden_states)
hidden_states = hidden_states.view(batch_size * sequence_length * self.num_groups, -1)
if self.training:
# sample code vector probs via gumbel in differentiable way
codevector_probs = nn.functional.gumbel_softmax(
hidden_states.float(), tau=self.temperature, hard=True
).type_as(hidden_states)
# compute perplexity
codevector_soft_dist = torch.softmax(
hidden_states.view(batch_size * sequence_length, self.num_groups, -1).float(), dim=-1
)
perplexity = self._compute_perplexity(codevector_soft_dist, mask_time_indices)
else:
# take argmax in non-differentiable way
# compute hard codevector distribution (one hot)
codevector_idx = hidden_states.argmax(dim=-1)
codevector_probs = hidden_states.new_zeros(*hidden_states.shape).scatter_(
-1, codevector_idx.view(-1, 1), 1.0
)
codevector_probs = codevector_probs.view(batch_size * sequence_length, self.num_groups, -1)
perplexity = self._compute_perplexity(codevector_probs, mask_time_indices)
codevector_probs = codevector_probs.view(batch_size * sequence_length, -1)
# use probs to retrieve codevectors
codevectors_per_group = codevector_probs.unsqueeze(-1) * self.codevectors
codevectors = (
codevectors_per_group.view(batch_size * sequence_length, self.num_groups, self.num_vars, -1)
.sum(-2)
.view(batch_size, sequence_length, -1)
)
if return_probs:
return codevectors, perplexity, codevector_probs.view(batch_size, sequence_length, self.num_groups, self.num_vars)
return codevectors, perplexity
class MusicQuantizer2(nn.Module):
def __init__(self, inp_channels=256, inner_dim=1024, codevector_dim=1024, down_steps=2,
max_gumbel_temperature=2.0, min_gumbel_temperature=.5, gumbel_temperature_decay=.999995,
codebook_size=16, codebook_groups=4):
super().__init__()
if not isinstance(inner_dim, list):
inner_dim = [inner_dim // 2 ** x for x in range(down_steps+1)]
self.max_gumbel_temperature = max_gumbel_temperature
self.min_gumbel_temperature = min_gumbel_temperature
self.gumbel_temperature_decay = gumbel_temperature_decay
self.quantizer = Wav2Vec2GumbelVectorQuantizer(inner_dim[0], codevector_dim=codevector_dim,
num_codevector_groups=codebook_groups,
num_codevectors_per_group=codebook_size)
self.codebook_size = codebook_size
self.codebook_groups = codebook_groups
self.num_losses_record = []
if down_steps == 0:
self.down = nn.Conv1d(inp_channels, inner_dim[0], kernel_size=3, padding=1)
self.up = nn.Conv1d(inner_dim[0], inp_channels, kernel_size=3, padding=1)
elif down_steps == 2:
self.down = nn.Sequential(nn.Conv1d(inp_channels, inner_dim[-1], kernel_size=3, padding=1),
*[Downsample(inner_dim[-i], inner_dim[-i-1]) for i in range(1,len(inner_dim))])
self.up = nn.Sequential(*[Upsample(inner_dim[i], inner_dim[i+1]) for i in range(len(inner_dim)-1)] +
[nn.Conv1d(inner_dim[-1], inp_channels, kernel_size=3, padding=1)])
self.encoder = nn.Sequential(ResBlock(inner_dim[0]),
ResBlock(inner_dim[0]),
ResBlock(inner_dim[0]))
self.enc_norm = nn.LayerNorm(inner_dim[0], eps=1e-5)
self.decoder = nn.Sequential(nn.Conv1d(codevector_dim, inner_dim[0], kernel_size=3, padding=1),
ResBlock(inner_dim[0]),
ResBlock(inner_dim[0]),
ResBlock(inner_dim[0]))
self.codes = torch.zeros((3000000,), dtype=torch.long)
self.internal_step = 0
self.code_ind = 0
self.total_codes = 0
def get_codes(self, mel, project=False):
proj = self.m2v.input_blocks(mel).permute(0,2,1)
_, proj = self.m2v.projector(proj)
if project:
proj, _ = self.quantizer(proj)
return proj
else:
return self.quantizer.get_codes(proj)
def forward(self, mel, return_decoder_latent=False):
orig_mel = mel
cm = ceil_multiple(mel.shape[-1], 2 ** (len(self.down)-1))
if cm != 0:
mel = F.pad(mel, (0,cm-mel.shape[-1]))
h = self.down(mel)
h = self.encoder(h)
h = self.enc_norm(h.permute(0,2,1))
codevectors, perplexity, codes = self.quantizer(h, return_probs=True)
diversity = (self.quantizer.num_codevectors - perplexity) / self.quantizer.num_codevectors
self.log_codes(codes)
h = self.decoder(codevectors.permute(0,2,1))
if return_decoder_latent:
return h, diversity
reconstructed = self.up(h.float())
reconstructed = reconstructed[:, :, :orig_mel.shape[-1]]
mse = F.mse_loss(reconstructed, orig_mel)
return mse, diversity
def log_codes(self, codes):
if self.internal_step % 5 == 0:
codes = torch.argmax(codes, dim=-1)
ccodes = codes[:,:,0]
for j in range(1,codes.shape[-1]):
ccodes += codes[:,:,j] * self.codebook_size ** j
codes = ccodes
codes = codes.flatten()
l = codes.shape[0]
i = self.code_ind if (self.codes.shape[0] - self.code_ind) > l else self.codes.shape[0] - l
self.codes[i:i+l] = codes.cpu()
self.code_ind = self.code_ind + l
if self.code_ind >= self.codes.shape[0]:
self.code_ind = 0
self.total_codes += 1
def get_debug_values(self, step, __):
if self.total_codes > 0:
return {'histogram_codes': self.codes[:self.total_codes]}
else:
return {}
def update_for_step(self, step, *args):
self.quantizer.temperature = max(
self.max_gumbel_temperature * self.gumbel_temperature_decay**step,
self.min_gumbel_temperature,
)
@register_model
def register_music_quantizer2(opt_net, opt):
return MusicQuantizer2(**opt_net['kwargs'])
if __name__ == '__main__':
model = MusicQuantizer2(inner_dim=[1024], codevector_dim=1024, codebook_size=256, codebook_groups=2)
print_network(model)
mel = torch.randn((2,256,782))
model(mel)

View File

@ -2,6 +2,7 @@ import torch
import torch.nn as nn import torch.nn as nn
import torch.nn.functional as F import torch.nn.functional as F
from models.audio.music.music_quantizer2 import MusicQuantizer2
from models.diffusion.nn import timestep_embedding, normalization, zero_module, conv_nd, linear from models.diffusion.nn import timestep_embedding, normalization, zero_module, conv_nd, linear
from models.diffusion.unet_diffusion import TimestepBlock from models.diffusion.unet_diffusion import TimestepBlock
from models.lucidrains.x_transformers import Encoder, Attention, FeedForward, RMSScaleShiftNorm, RotaryEmbedding from models.lucidrains.x_transformers import Encoder, Attention, FeedForward, RMSScaleShiftNorm, RotaryEmbedding
@ -39,15 +40,16 @@ class TimestepRotaryEmbedSequential(nn.Sequential, TimestepBlock):
class DietAttentionBlock(TimestepBlock): class DietAttentionBlock(TimestepBlock):
def __init__(self, in_dim, dim, heads, dropout): def __init__(self, in_dim, dim, heads, dropout):
super().__init__() super().__init__()
self.rms_scale_norm = RMSScaleShiftNorm(in_dim)
self.proj = nn.Linear(in_dim, dim) self.proj = nn.Linear(in_dim, dim)
self.rms_scale_norm = RMSScaleShiftNorm(dim)
self.attn = Attention(dim, heads=heads, causal=False, dropout=dropout) self.attn = Attention(dim, heads=heads, causal=False, dropout=dropout)
self.ff = FeedForward(dim, in_dim, mult=1, dropout=dropout, zero_init_output=True) self.ff = FeedForward(dim, in_dim, mult=1, dropout=dropout, zero_init_output=True)
def forward(self, x, timestep_emb, rotary_emb): def forward(self, x, timestep_emb, rotary_emb):
h = self.proj(x) h = self.rms_scale_norm(x, norm_scale_shift_inp=timestep_emb)
h = self.rms_scale_norm(h, norm_scale_shift_inp=timestep_emb) h = self.proj(h)
h, _, _, _ = checkpoint(self.attn, h, None, None, None, None, None, rotary_emb) k, _, _, _ = checkpoint(self.attn, h, None, None, None, None, None, rotary_emb)
h = k + h
h = checkpoint(self.ff, h) h = checkpoint(self.ff, h)
return h + x return h + x
@ -59,6 +61,7 @@ class TransformerDiffusion(nn.Module):
def __init__( def __init__(
self, self,
prenet_channels=256, prenet_channels=256,
prenet_layers=3,
model_channels=512, model_channels=512,
block_channels=256, block_channels=256,
num_layers=8, num_layers=8,
@ -107,7 +110,7 @@ class TransformerDiffusion(nn.Module):
self.input_converter = nn.Linear(input_vec_dim, prenet_channels) self.input_converter = nn.Linear(input_vec_dim, prenet_channels)
self.code_converter = Encoder( self.code_converter = Encoder(
dim=prenet_channels, dim=prenet_channels,
depth=3, depth=prenet_layers,
heads=prenet_heads, heads=prenet_heads,
ff_dropout=dropout, ff_dropout=dropout,
attn_dropout=dropout, attn_dropout=dropout,
@ -120,7 +123,7 @@ class TransformerDiffusion(nn.Module):
self.unconditioned_embedding = nn.Parameter(torch.randn(1,1,prenet_channels)) self.unconditioned_embedding = nn.Parameter(torch.randn(1,1,prenet_channels))
self.rotary_embeddings = RotaryEmbedding(rotary_emb_dim) self.rotary_embeddings = RotaryEmbedding(rotary_emb_dim)
self.cond_intg = nn.Linear(prenet_channels*2, block_channels) self.cond_intg = nn.Linear(prenet_channels*2, model_channels)
self.intg = nn.Linear(prenet_channels*2, model_channels) self.intg = nn.Linear(prenet_channels*2, model_channels)
self.layers = TimestepRotaryEmbedSequential(*[DietAttentionBlock(model_channels, block_channels, block_channels // 64, dropout) for _ in range(num_layers)]) self.layers = TimestepRotaryEmbedSequential(*[DietAttentionBlock(model_channels, block_channels, block_channels // 64, dropout) for _ in range(num_layers)])
@ -164,8 +167,10 @@ class TransformerDiffusion(nn.Module):
unused_params = [] unused_params = []
if conditioning_free: if conditioning_free:
code_emb = self.unconditioned_embedding.repeat(x.shape[0], 1, x.shape[-1]) code_emb = self.unconditioned_embedding.repeat(x.shape[0], x.shape[-1], 1)
unused_params.extend(list(self.code_converter.parameters()) + list(self.code_embedding.parameters())) cond_emb = self.conditioning_embedder(conditioning_input).permute(0,2,1)
cond_emb = self.conditioning_encoder(cond_emb)[:, 0]
unused_params.extend(list(self.code_converter.parameters()))
else: else:
if precomputed_code_embeddings is not None: if precomputed_code_embeddings is not None:
code_emb = precomputed_code_embeddings code_emb = precomputed_code_embeddings
@ -195,18 +200,87 @@ class TransformerDiffusion(nn.Module):
return out return out
class TransformerDiffusionWithQuantizer(nn.Module):
def __init__(self, freeze_quantizer_until=20000, **kwargs):
super().__init__()
self.internal_step = 0
self.freeze_quantizer_until = freeze_quantizer_until
self.diff = TransformerDiffusion(**kwargs)
self.quantizer = MusicQuantizer2(inp_channels=256, inner_dim=[1024], codevector_dim=1024, codebook_size=256,
codebook_groups=2, max_gumbel_temperature=4, min_gumbel_temperature=.5)
self.quantizer.quantizer.temperature = self.quantizer.min_gumbel_temperature
del self.quantizer.up
def update_for_step(self, step, *args):
self.internal_step = step
qstep = max(0, self.internal_step - self.freeze_quantizer_until)
self.quantizer.quantizer.temperature = max(
self.quantizer.max_gumbel_temperature * self.quantizer.gumbel_temperature_decay ** qstep,
self.quantizer.min_gumbel_temperature,
)
def forward(self, x, timesteps, truth_mel, conditioning_input, disable_diversity=False, conditioning_free=False):
quant_grad_enabled = self.internal_step > self.freeze_quantizer_until
with torch.set_grad_enabled(quant_grad_enabled):
proj, diversity_loss = self.quantizer(truth_mel, return_decoder_latent=True)
proj = proj.permute(0,2,1)
# Make sure this does not cause issues in DDP by explicitly using the parameters for nothing.
if not quant_grad_enabled:
unused = 0
for p in self.quantizer.parameters():
unused = unused + p.mean() * 0
proj = proj + unused
diversity_loss = diversity_loss * 0
diff = self.diff(x, timesteps, codes=proj, conditioning_input=conditioning_input, conditioning_free=conditioning_free)
if disable_diversity:
return diff
return diff, diversity_loss
def get_debug_values(self, step, __):
if self.quantizer.total_codes > 0:
return {'histogram_codes': self.quantizer.codes[:self.quantizer.total_codes]}
else:
return {}
@register_model @register_model
def register_transformer_diffusion6(opt_net, opt): def register_transformer_diffusion8(opt_net, opt):
return TransformerDiffusion(**opt_net['kwargs']) return TransformerDiffusion(**opt_net['kwargs'])
@register_model
def register_transformer_diffusion8_with_quantizer(opt_net, opt):
return TransformerDiffusionWithQuantizer(**opt_net['kwargs'])
"""
# For TFD5
if __name__ == '__main__': if __name__ == '__main__':
clip = torch.randn(2, 256, 400) clip = torch.randn(2, 256, 400)
aligned_sequence = torch.randn(2,100,512) aligned_sequence = torch.randn(2,100,512)
cond = torch.randn(2, 256, 400) cond = torch.randn(2, 256, 400)
ts = torch.LongTensor([600, 600]) ts = torch.LongTensor([600, 600])
model = TransformerDiffusion(model_channels=4096, block_channels=2048, prenet_channels=1024, num_layers=16) model = TransformerDiffusion(model_channels=3072, block_channels=1536, prenet_channels=1536)
torch.save(model, 'sample.pth') torch.save(model, 'sample.pth')
print_network(model) print_network(model)
o = model(clip, ts, aligned_sequence, cond) o = model(clip, ts, aligned_sequence, cond)
"""
if __name__ == '__main__':
clip = torch.randn(2, 256, 400)
cond = torch.randn(2, 256, 400)
ts = torch.LongTensor([600, 600])
model = TransformerDiffusionWithQuantizer(model_channels=2048, block_channels=1024, prenet_channels=1024, input_vec_dim=1024, num_layers=16, prenet_layers=6)
#quant_weights = torch.load('D:\\dlas\\experiments\\train_music_quant\\models\\18000_generator_ema.pth')
#diff_weights = torch.load('X:\\dlas\\experiments\\train_music_diffusion_tfd5\\models\\48000_generator_ema.pth')
#model.quantizer.load_state_dict(quant_weights, strict=False)
#model.diff.load_state_dict(diff_weights)
torch.save(model.state_dict(), 'sample.pth')
print_network(model)
o = model(clip, ts, clip, cond)

View File

@ -530,12 +530,12 @@ class UNetMusicModel(nn.Module):
ch, ch,
time_embed_dim, time_embed_dim,
dropout, dropout,
out_channels=mult * model_channels, out_channels=int(mult * model_channels),
dims=dims, dims=dims,
use_scale_shift_norm=use_scale_shift_norm, use_scale_shift_norm=use_scale_shift_norm,
) )
] ]
ch = mult * model_channels ch = int(mult * model_channels)
if ds in attention_resolutions: if ds in attention_resolutions:
layers.append( layers.append(
AttentionBlock( AttentionBlock(
@ -605,12 +605,12 @@ class UNetMusicModel(nn.Module):
ch + ich, ch + ich,
time_embed_dim, time_embed_dim,
dropout, dropout,
out_channels=model_channels * mult, out_channels=int(model_channels * mult),
dims=dims, dims=dims,
use_scale_shift_norm=use_scale_shift_norm, use_scale_shift_norm=use_scale_shift_norm,
) )
] ]
ch = model_channels * mult ch = int(model_channels * mult)
if ds in attention_resolutions: if ds in attention_resolutions:
layers.append( layers.append(
AttentionBlock( AttentionBlock(
@ -749,9 +749,9 @@ if __name__ == '__main__':
clip = torch.randn(2, 256, 782) clip = torch.randn(2, 256, 782)
cond = torch.randn(2, 256, 782) cond = torch.randn(2, 256, 782)
ts = torch.LongTensor([600, 600]) ts = torch.LongTensor([600, 600])
model = UNetMusicModelWithQuantizer(in_channels=256, out_channels=512, model_channels=640, num_res_blocks=3, input_vec_dim=1024, model = UNetMusicModelWithQuantizer(in_channels=256, out_channels=512, model_channels=1024, num_res_blocks=3, input_vec_dim=1024,
attention_resolutions=(2,4), channel_mult=(1,2,3), dims=1, attention_resolutions=(2,4), channel_mult=(1,1.5,2), dims=1,
use_scale_shift_norm=True, dropout=.1, num_heads=8, unconditioned_percentage=.4) use_scale_shift_norm=True, dropout=.1, num_heads=16, unconditioned_percentage=.4)
print_network(model) print_network(model)
quant_weights = torch.load('D:\\dlas\\experiments\\train_music_quant\\models\\18000_generator_ema.pth') quant_weights = torch.load('D:\\dlas\\experiments\\train_music_quant\\models\\18000_generator_ema.pth')

View File

@ -328,7 +328,7 @@ class Mel2vecCodesInjector(Injector):
def __init__(self, opt, env): def __init__(self, opt, env):
super().__init__(opt, env) super().__init__(opt, env)
self.m2v = get_music_codegen() self.m2v = get_music_codegen()
del self.m2v.m2v.encoder # This is a big memory sink which will not get used. del self.m2v.quantizer.encoder # This is a big memory sink which will not get used.
self.needs_move = True self.needs_move = True
self.inj_vector = opt_get(opt, ['vector'], False) self.inj_vector = opt_get(opt, ['vector'], False)