lambda nets in switched_conv and a vqvae to use it
This commit is contained in:
parent
b374dcdd46
commit
10ec6bda1d
|
@ -4,6 +4,7 @@ from collections import OrderedDict
|
|||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from lambda_networks import LambdaLayer
|
||||
from torch.nn import init, Conv2d
|
||||
import torch.nn.functional as F
|
||||
|
||||
|
@ -21,6 +22,7 @@ class SwitchedConv(nn.Module):
|
|||
bias: bool = True,
|
||||
padding_mode: str = 'zeros',
|
||||
include_coupler: bool = False, # A 'coupler' is a latent converter which can make any bxcxhxw tensor a compatible switchedconv selector by performing a linear 1x1 conv, softmax and interpolate.
|
||||
coupler_mode: str = 'standard',
|
||||
coupler_dim_in: int = 0):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
|
@ -33,7 +35,11 @@ class SwitchedConv(nn.Module):
|
|||
self.groups = groups
|
||||
|
||||
if include_coupler:
|
||||
if coupler_mode == 'standard':
|
||||
self.coupler = Conv2d(coupler_dim_in, switch_breadth, kernel_size=1)
|
||||
elif coupler_mode == 'lambda':
|
||||
self.coupler = LambdaLayer(dim=coupler_dim_in, dim_out=switch_breadth, r=23, dim_k=16, heads=2, dim_u=1)
|
||||
|
||||
else:
|
||||
self.coupler = None
|
||||
|
||||
|
@ -52,12 +58,15 @@ class SwitchedConv(nn.Module):
|
|||
bound = 1 / math.sqrt(fan_in)
|
||||
init.uniform_(self.bias, -bound, bound)
|
||||
|
||||
def forward(self, inp, selector):
|
||||
def forward(self, inp, selector=None):
|
||||
if self.coupler:
|
||||
if selector is None: # A coupler can convert from any input to a selector, so 'None' is allowed.
|
||||
selector = inp
|
||||
selector = F.softmax(self.coupler(selector), dim=1)
|
||||
out_shape = [s // self.stride for s in inp.shape[2:]]
|
||||
if selector.shape[2] != out_shape[0] or selector.shape[3] != out_shape[1]:
|
||||
selector = F.interpolate(selector, size=out_shape, mode="nearest")
|
||||
assert selector is not None
|
||||
|
||||
conv_results = []
|
||||
for i, w in enumerate(self.weights):
|
||||
|
|
|
@ -1,29 +1,25 @@
|
|||
# Copyright 2018 The Sonnet Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.nn import functional as F
|
||||
|
||||
import torch.distributed as distributed
|
||||
|
||||
from models.vqvae.scaled_weight_conv import ScaledWeightConv, ScaledWeightConvTranspose
|
||||
from models.switched_conv import SwitchedConv, convert_conv_net_state_dict_to_switched_conv
|
||||
from trainer.networks import register_model
|
||||
from utils.util import checkpoint, opt_get
|
||||
|
||||
|
||||
# Upsamples and blurs (similar to StyleGAN). Replaces ConvTranspose2D from the original paper.
|
||||
class UpsampleConv(nn.Module):
|
||||
def __init__(self, in_filters, out_filters, breadth, kernel_size, padding):
|
||||
super().__init__()
|
||||
self.conv = SwitchedConv(in_filters, out_filters, kernel_size, breadth, padding=padding, include_coupler=True, coupler_mode='lambda', coupler_dim_in=in_filters)
|
||||
|
||||
def forward(self, x):
|
||||
up = torch.nn.functional.interpolate(x, scale_factor=2)
|
||||
return self.conv(up)
|
||||
|
||||
|
||||
class Quantize(nn.Module):
|
||||
def __init__(self, dim, n_embed, decay=0.99, eps=1e-5):
|
||||
super().__init__()
|
||||
|
@ -82,20 +78,15 @@ class ResBlock(nn.Module):
|
|||
def __init__(self, in_channel, channel, breadth):
|
||||
super().__init__()
|
||||
|
||||
self.conv = nn.ModuleList([
|
||||
self.conv = nn.Sequential(
|
||||
nn.ReLU(inplace=True),
|
||||
ScaledWeightConv(in_channel, channel, 3, padding=1, breadth=breadth),
|
||||
SwitchedConv(in_channel, channel, 3, breadth, padding=1, include_coupler=True, coupler_mode='lambda', coupler_dim_in=in_channel),
|
||||
nn.ReLU(inplace=True),
|
||||
ScaledWeightConv(channel, in_channel, 1, breadth=breadth),
|
||||
])
|
||||
SwitchedConv(channel, in_channel, 1, breadth, include_coupler=True, coupler_mode='lambda', coupler_dim_in=channel),
|
||||
)
|
||||
|
||||
def forward(self, input, masks):
|
||||
out = input
|
||||
for m in self.conv:
|
||||
if isinstance(m, ScaledWeightConv):
|
||||
out = m(out, masks)
|
||||
else:
|
||||
out = m(out)
|
||||
def forward(self, input):
|
||||
out = self.conv(input)
|
||||
out += input
|
||||
|
||||
return out
|
||||
|
@ -107,34 +98,29 @@ class Encoder(nn.Module):
|
|||
|
||||
if stride == 4:
|
||||
blocks = [
|
||||
ScaledWeightConv(in_channel, channel // 2, 4, stride=2, padding=1, breadth=breadth),
|
||||
SwitchedConv(in_channel, channel // 2, 5, breadth, stride=2, padding=2, include_coupler=True, coupler_mode='lambda', coupler_dim_in=in_channel),
|
||||
nn.ReLU(inplace=True),
|
||||
ScaledWeightConv(channel // 2, channel, 4, stride=2, padding=1, breadth=breadth),
|
||||
SwitchedConv(channel // 2, channel, 5, breadth, stride=2, padding=2, include_coupler=True, coupler_mode='lambda', coupler_dim_in=channel // 2),
|
||||
nn.ReLU(inplace=True),
|
||||
ScaledWeightConv(channel, channel, 3, padding=1, breadth=breadth),
|
||||
SwitchedConv(channel, channel, 3, breadth, padding=1, include_coupler=True, coupler_mode='lambda', coupler_dim_in=channel),
|
||||
]
|
||||
|
||||
elif stride == 2:
|
||||
blocks = [
|
||||
ScaledWeightConv(in_channel, channel // 2, 4, stride=2, padding=1, breadth=breadth),
|
||||
SwitchedConv(in_channel, channel // 2, 5, breadth, stride=2, padding=2, include_coupler=True, coupler_mode='lambda', coupler_dim_in=in_channel),
|
||||
nn.ReLU(inplace=True),
|
||||
ScaledWeightConv(channel // 2, channel, 3, padding=1, breadth=breadth),
|
||||
SwitchedConv(channel // 2, channel, 3, breadth, padding=1, include_coupler=True, coupler_mode='lambda', coupler_dim_in=channel // 2),
|
||||
]
|
||||
|
||||
for i in range(n_res_block):
|
||||
blocks.append(ResBlock(channel, n_res_channel, breadth=breadth))
|
||||
blocks.append(ResBlock(channel, n_res_channel, breadth))
|
||||
|
||||
blocks.append(nn.ReLU(inplace=True))
|
||||
|
||||
self.blocks = nn.ModuleList(blocks)
|
||||
self.blocks = nn.Sequential(*blocks)
|
||||
|
||||
def forward(self, input):
|
||||
for block in self.blocks:
|
||||
if isinstance(block, ScaledWeightConv) or isinstance(block, ResBlock):
|
||||
input = block(input, self.masks)
|
||||
else:
|
||||
input = block(input)
|
||||
return input
|
||||
return self.blocks(input)
|
||||
|
||||
|
||||
class Decoder(nn.Module):
|
||||
|
@ -143,39 +129,33 @@ class Decoder(nn.Module):
|
|||
):
|
||||
super().__init__()
|
||||
|
||||
blocks = [ScaledWeightConv(in_channel, channel, 3, padding=1, breadth=breadth)]
|
||||
blocks = [SwitchedConv(in_channel, channel, 3, breadth, padding=1, include_coupler=True, coupler_mode='lambda', coupler_dim_in=in_channel)]
|
||||
|
||||
for i in range(n_res_block):
|
||||
blocks.append(ResBlock(channel, n_res_channel, breadth=breadth))
|
||||
blocks.append(ResBlock(channel, n_res_channel, breadth))
|
||||
|
||||
blocks.append(nn.ReLU(inplace=True))
|
||||
|
||||
if stride == 4:
|
||||
blocks.extend(
|
||||
[
|
||||
ScaledWeightConvTranspose(channel, channel // 2, 4, stride=2, padding=1, breadth=breadth),
|
||||
UpsampleConv(channel, channel // 2, breadth, 5, padding=2),
|
||||
nn.ReLU(inplace=True),
|
||||
ScaledWeightConvTranspose(
|
||||
channel // 2, out_channel, 4, stride=2, padding=1, breadth=breadth
|
||||
UpsampleConv(
|
||||
channel // 2, out_channel, breadth, 5, padding=2
|
||||
),
|
||||
]
|
||||
)
|
||||
|
||||
elif stride == 2:
|
||||
blocks.append(
|
||||
ScaledWeightConvTranspose(channel, out_channel, 4, stride=2, padding=1, breadth=breadth)
|
||||
UpsampleConv(channel, out_channel, breadth, 5, padding=2)
|
||||
)
|
||||
|
||||
self.blocks = nn.ModuleList(blocks)
|
||||
self.blocks = nn.Sequential(*blocks)
|
||||
|
||||
def forward(self, input):
|
||||
for block in self.blocks:
|
||||
if isinstance(block, ScaledWeightConvTranspose) or isinstance(block, ResBlock) \
|
||||
or isinstance(block, ScaledWeightConv):
|
||||
input = block(input, self.masks)
|
||||
else:
|
||||
input = block(input)
|
||||
return input
|
||||
return self.blocks(input)
|
||||
|
||||
|
||||
class VQVAE(nn.Module):
|
||||
|
@ -187,22 +167,22 @@ class VQVAE(nn.Module):
|
|||
n_res_channel=32,
|
||||
codebook_dim=64,
|
||||
codebook_size=512,
|
||||
breadth=8,
|
||||
decay=0.99,
|
||||
breadth=4,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.enc_b = Encoder(in_channel, channel, n_res_block, n_res_channel, stride=4, breadth=breadth)
|
||||
self.enc_t = Encoder(channel, channel, n_res_block, n_res_channel, stride=2, breadth=breadth)
|
||||
self.quantize_conv_t = ScaledWeightConv(channel, codebook_dim, 1, breadth=breadth)
|
||||
self.quantize_conv_t = nn.Conv2d(channel, codebook_dim, 1)
|
||||
self.quantize_t = Quantize(codebook_dim, codebook_size)
|
||||
self.dec_t = Decoder(
|
||||
codebook_dim, codebook_dim, channel, n_res_block, n_res_channel, stride=2, breadth=breadth
|
||||
)
|
||||
self.quantize_conv_b = ScaledWeightConv(codebook_dim + channel, codebook_dim, 1, breadth=breadth)
|
||||
self.quantize_b = Quantize(codebook_dim, codebook_size)
|
||||
self.upsample_t = ScaledWeightConvTranspose(
|
||||
codebook_dim, codebook_dim, 4, stride=2, padding=1, breadth=breadth
|
||||
self.quantize_conv_b = nn.Conv2d(codebook_dim + channel, codebook_dim, 1)
|
||||
self.quantize_b = Quantize(codebook_dim, codebook_size*2)
|
||||
self.upsample_t = UpsampleConv(
|
||||
codebook_dim, codebook_dim, breadth, 5, padding=2
|
||||
)
|
||||
self.dec = Decoder(
|
||||
codebook_dim + codebook_dim,
|
||||
|
@ -214,21 +194,17 @@ class VQVAE(nn.Module):
|
|||
breadth=breadth
|
||||
)
|
||||
|
||||
def forward(self, input, masks):
|
||||
# This awkward injection point is necessary to enable checkpointing to work.
|
||||
for m in [self.enc_b, self.enc_t, self.dec_t, self.dec]:
|
||||
m.masks = masks
|
||||
|
||||
quant_t, quant_b, diff, _, _ = self.encode(input, masks)
|
||||
dec = self.decode(quant_t, quant_b, masks)
|
||||
def forward(self, input):
|
||||
quant_t, quant_b, diff, _, _ = self.encode(input)
|
||||
dec = self.decode(quant_t, quant_b)
|
||||
|
||||
return dec, diff
|
||||
|
||||
def encode(self, input, masks):
|
||||
def encode(self, input):
|
||||
enc_b = checkpoint(self.enc_b, input)
|
||||
enc_t = checkpoint(self.enc_t, enc_b)
|
||||
|
||||
quant_t = self.quantize_conv_t(enc_t, masks).permute(0, 2, 3, 1)
|
||||
quant_t = self.quantize_conv_t(enc_t).permute(0, 2, 3, 1)
|
||||
quant_t, diff_t, id_t = self.quantize_t(quant_t)
|
||||
quant_t = quant_t.permute(0, 3, 1, 2)
|
||||
diff_t = diff_t.unsqueeze(0)
|
||||
|
@ -236,15 +212,15 @@ class VQVAE(nn.Module):
|
|||
dec_t = checkpoint(self.dec_t, quant_t)
|
||||
enc_b = torch.cat([dec_t, enc_b], 1)
|
||||
|
||||
quant_b = self.quantize_conv_b(enc_b, masks).permute(0, 2, 3, 1)
|
||||
quant_b = checkpoint(self.quantize_conv_b, enc_b).permute(0, 2, 3, 1)
|
||||
quant_b, diff_b, id_b = self.quantize_b(quant_b)
|
||||
quant_b = quant_b.permute(0, 3, 1, 2)
|
||||
diff_b = diff_b.unsqueeze(0)
|
||||
|
||||
return quant_t, quant_b, diff_t + diff_b, id_t, id_b
|
||||
|
||||
def decode(self, quant_t, quant_b, masks):
|
||||
upsample_t = self.upsample_t(quant_t, masks)
|
||||
def decode(self, quant_t, quant_b):
|
||||
upsample_t = self.upsample_t(quant_t)
|
||||
quant = torch.cat([upsample_t, quant_b], 1)
|
||||
dec = checkpoint(self.dec, quant)
|
||||
|
||||
|
@ -256,12 +232,27 @@ class VQVAE(nn.Module):
|
|||
quant_b = self.quantize_b.embed_code(code_b)
|
||||
quant_b = quant_b.permute(0, 3, 1, 2)
|
||||
|
||||
dec = self.decode(quant_t, quant_b, masks)
|
||||
dec = self.decode(quant_t, quant_b)
|
||||
|
||||
return dec
|
||||
|
||||
|
||||
def convert_weights(weights_file):
|
||||
sd = torch.load(weights_file)
|
||||
import models.vqvae.vqvae_no_conv_transpose as stdvq
|
||||
std_model = stdvq.VQVAE()
|
||||
std_model.load_state_dict(sd)
|
||||
nsd = convert_conv_net_state_dict_to_switched_conv(std_model, 4, ['quantize_conv_t', 'quantize_conv_b'])
|
||||
torch.save(nsd, "converted.pth")
|
||||
|
||||
|
||||
@register_model
|
||||
def register_weighted_vqvae(opt_net, opt):
|
||||
def register_vqvae_norm_switched_conv_lambda(opt_net, opt):
|
||||
kw = opt_get(opt_net, ['kwargs'], {})
|
||||
return VQVAE(**kw)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
#v = VQVAE()
|
||||
#print(v(torch.randn(1,3,128,128))[0].shape)
|
||||
convert_weights("../../../experiments/4000_generator.pth")
|
Loading…
Reference in New Issue
Block a user