Mods to SRG to support returning switch logits
This commit is contained in:
parent
cc915303a5
commit
17d78195ee
|
@ -108,7 +108,8 @@ class ConfigurableSwitchComputer(nn.Module):
|
|||
|
||||
# Regarding inputs: it is acceptable to pass in a tuple/list as an input for (x), but the first element
|
||||
# *must* be the actual parameter that gets fed through the network - it is assumed to be the identity.
|
||||
def forward(self, x, att_in=None, identity=None, output_attention_weights=True, fixed_scale=1, do_checkpointing=False):
|
||||
def forward(self, x, att_in=None, identity=None, output_attention_weights=True, fixed_scale=1, do_checkpointing=False,
|
||||
output_att_logits=False):
|
||||
if isinstance(x, tuple):
|
||||
x1 = x[0]
|
||||
else:
|
||||
|
@ -148,11 +149,14 @@ class ConfigurableSwitchComputer(nn.Module):
|
|||
m = self.multiplexer(*att_in)
|
||||
|
||||
# It is assumed that [xformed] and [m] are collapsed into tensors at this point.
|
||||
outputs, attention = self.switch(xformed, m, True, self.update_norm)
|
||||
outputs, attention, att_logits = self.switch(xformed, m, True, self.update_norm, output_attention_logits=True)
|
||||
outputs = identity + outputs * self.switch_scale * fixed_scale
|
||||
outputs = outputs + self.post_switch_conv(outputs) * self.psc_scale * fixed_scale
|
||||
if output_attention_weights:
|
||||
return outputs, attention
|
||||
if output_att_logits:
|
||||
return outputs, attention, att_logits
|
||||
else:
|
||||
return outputs, attention
|
||||
else:
|
||||
return outputs
|
||||
|
||||
|
@ -602,7 +606,7 @@ class SwitchModelBase(nn.Module):
|
|||
|
||||
from models.archs.spinenet_arch import make_res_layer, BasicBlock
|
||||
class BigMultiplexer(nn.Module):
|
||||
def __init__(self, in_nc, nf, multiplexer_channels):
|
||||
def __init__(self, in_nc, nf, mode, multiplexer_channels):
|
||||
super(BigMultiplexer, self).__init__()
|
||||
|
||||
self.spine = SpineNet(arch='96', output_level=[3], double_reduce_early=False)
|
||||
|
@ -611,20 +615,28 @@ class BigMultiplexer(nn.Module):
|
|||
self.tail_proc = make_res_layer(BasicBlock, nf, nf, 2)
|
||||
self.tail_join = ReferenceJoinBlock(nf)
|
||||
|
||||
# Blocks used to create the key
|
||||
self.key_process = ConvGnSilu(nf, nf, kernel_size=1, activation=True, norm=False, bias=True)
|
||||
|
||||
# Postprocessing blocks.
|
||||
self.query_key_combine = ConvGnSilu(nf*2, nf, kernel_size=3, activation=True, norm=False, bias=False)
|
||||
self.cbl0 = ConvGnSilu(nf, nf, kernel_size=3, activation=True, norm=True, bias=False)
|
||||
self.cbl1 = ConvGnSilu(nf, nf // 2, kernel_size=1, norm=True, bias=False, num_groups=4)
|
||||
self.cbl2 = ConvGnSilu(nf // 2, 1, kernel_size=1, norm=False, bias=False)
|
||||
self.mode = mode
|
||||
if mode == 0:
|
||||
self.key_process = ConvGnSilu(nf, nf, kernel_size=1, activation=True, norm=False, bias=True)
|
||||
self.query_key_combine = ConvGnSilu(nf*2, nf, kernel_size=3, activation=True, norm=False, bias=False)
|
||||
self.cbl0 = ConvGnSilu(nf, nf, kernel_size=3, activation=True, norm=True, bias=False)
|
||||
self.cbl1 = ConvGnSilu(nf, nf // 2, kernel_size=1, norm=True, bias=False, num_groups=4)
|
||||
self.cbl2 = ConvGnSilu(nf // 2, 1, kernel_size=1, norm=False, bias=False)
|
||||
else:
|
||||
self.key_process = ConvGnSilu(nf, nf, kernel_size=3, activation=True, norm=False, bias=True)
|
||||
self.query_key_combine = ConvGnSilu(nf*2, nf, kernel_size=1, activation=True, norm=True, bias=False)
|
||||
self.cbl0 = ConvGnSilu(nf, nf, kernel_size=1, activation=True, norm=True, bias=False)
|
||||
self.cbl1 = ConvGnSilu(nf, nf // 2, kernel_size=1, activation=True, norm=False, bias=False)
|
||||
self.cbl2 = ConvGnSilu(nf // 2, 1, kernel_size=1, activation=False, norm=False, bias=False)
|
||||
|
||||
def forward(self, x, transformations):
|
||||
s = self.spine(x)[0]
|
||||
tail = self.fea_tail(x)
|
||||
tail = self.tail_proc(tail)
|
||||
q = F.interpolate(s, scale_factor=2, mode='bilinear')
|
||||
if self.mode == 0:
|
||||
q = F.interpolate(s, scale_factor=2, mode='bilinear')
|
||||
else:
|
||||
q = F.interpolate(s, scale_factor=2, mode='nearest')
|
||||
q = self.spine_red_proc(q)
|
||||
q, _ = self.tail_join(q, tail)
|
||||
|
||||
|
@ -642,14 +654,15 @@ class BigMultiplexer(nn.Module):
|
|||
|
||||
|
||||
class TheBigSwitch(SwitchModelBase):
|
||||
def __init__(self, in_nc, nf, xforms=16, upscale=2, init_temperature=10):
|
||||
def __init__(self, in_nc, nf, xforms=16, upscale=2, mode=0, init_temperature=10):
|
||||
super(TheBigSwitch, self).__init__(init_temperature, 10000)
|
||||
self.nf = nf
|
||||
self.transformation_counts = xforms
|
||||
self.mode = mode
|
||||
|
||||
self.model_fea_conv = ConvGnLelu(in_nc, nf, kernel_size=7, norm=False, activation=False)
|
||||
|
||||
multiplx_fn = functools.partial(BigMultiplexer, in_nc, nf)
|
||||
multiplx_fn = functools.partial(BigMultiplexer, in_nc, nf, mode)
|
||||
transform_fn = functools.partial(MultiConvBlock, nf, int(nf * 1.5), nf, kernel_size=3, depth=4, weight_init_factor=.1)
|
||||
self.switch = ConfigurableSwitchComputer(nf, multiplx_fn,
|
||||
pre_transform_block=None, transform_block=transform_fn,
|
||||
|
@ -673,14 +686,20 @@ class TheBigSwitch(SwitchModelBase):
|
|||
sw.set_update_attention_norm(save_attentions)
|
||||
|
||||
x1 = self.model_fea_conv(x)
|
||||
x1, a1 = self.switch(x1, att_in=x, do_checkpointing=True)
|
||||
if self.mode == 0:
|
||||
x1, a1 = self.switch(x1, att_in=x, do_checkpointing=True)
|
||||
else:
|
||||
x1, a1, attlogits = self.switch(x1, att_in=x, do_checkpointing=True, output_att_logits=True)
|
||||
x_out = checkpoint(self.final_lr_conv, x1)
|
||||
x_out = checkpoint(self.upsample, x_out)
|
||||
x_out = checkpoint(self.final_hr_conv2, x_out)
|
||||
|
||||
if save_attentions:
|
||||
self.attentions = [a1]
|
||||
return x_out,
|
||||
if self.mode == 0:
|
||||
return x_out,
|
||||
else:
|
||||
return x_out, attlogits.permute(0,3,1,2)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
|
|
@ -110,7 +110,8 @@ def define_G(opt, net_key='network_G', scale=None):
|
|||
elif which_model == 'ssg_teco':
|
||||
netG = ssg.StackedSwitchGenerator2xTeco(nf=opt_net['nf'], xforms=opt_net['num_transforms'], init_temperature=opt_net['temperature'] if 'temperature' in opt_net.keys() else 10)
|
||||
elif which_model == 'big_switch':
|
||||
netG = SwitchedGen_arch.TheBigSwitch(opt_net['in_nc'], opt_net['nf'], opt_net['num_transforms'], opt_net['scale'], opt_net['temperature'])
|
||||
netG = SwitchedGen_arch.TheBigSwitch(opt_net['in_nc'], nf=opt_net['nf'], xforms=opt_net['num_transforms'], upscale=opt_net['scale'],
|
||||
init_temperature=opt_net['temperature'], mode=opt_net['mode'])
|
||||
elif which_model == "flownet2":
|
||||
from models.flownet2.models import FlowNet2
|
||||
ld = torch.load(opt_net['load_path'])
|
||||
|
|
|
@ -184,21 +184,28 @@ class ImagePatchInjector(Injector):
|
|||
def __init__(self, opt, env):
|
||||
super(ImagePatchInjector, self).__init__(opt, env)
|
||||
self.patch_size = opt['patch_size']
|
||||
self.resize = opt['resize'] if 'resize' in opt.keys() else None # If specified, the output is resized to a square with this size after patch extraction.
|
||||
|
||||
def forward(self, state):
|
||||
im = state[self.opt['in']]
|
||||
if self.env['training']:
|
||||
return { self.opt['out']: im[:, :3, :self.patch_size, :self.patch_size],
|
||||
res = { self.opt['out']: im[:, :3, :self.patch_size, :self.patch_size],
|
||||
'%s_top_left' % (self.opt['out'],): im[:, :, :self.patch_size, :self.patch_size],
|
||||
'%s_top_right' % (self.opt['out'],): im[:, :, :self.patch_size, -self.patch_size:],
|
||||
'%s_bottom_left' % (self.opt['out'],): im[:, :, -self.patch_size:, :self.patch_size],
|
||||
'%s_bottom_right' % (self.opt['out'],): im[:, :, -self.patch_size:, -self.patch_size:] }
|
||||
else:
|
||||
return { self.opt['out']: im,
|
||||
res = { self.opt['out']: im,
|
||||
'%s_top_left' % (self.opt['out'],): im,
|
||||
'%s_top_right' % (self.opt['out'],): im,
|
||||
'%s_bottom_left' % (self.opt['out'],): im,
|
||||
'%s_bottom_right' % (self.opt['out'],): im }
|
||||
if self.resize is not None:
|
||||
res2 = {}
|
||||
for k, v in res.items():
|
||||
res2[k] = torch.nn.functional.interpolate(v, size=(self.resize, self.resize), mode="nearest")
|
||||
res = res2
|
||||
return res
|
||||
|
||||
|
||||
# Concatenates a list of tensors on the specified dimension.
|
||||
|
|
|
@ -32,7 +32,7 @@ def init_dist(backend='nccl', **kwargs):
|
|||
def main():
|
||||
#### options
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_exd_imgset_ssgdeep.yml')
|
||||
parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_exd_imgset_bigswitch.yml')
|
||||
parser.add_argument('--launcher', choices=['none', 'pytorch'], default='none', help='job launcher')
|
||||
parser.add_argument('--local_rank', type=int, default=0)
|
||||
args = parser.parse_args()
|
||||
|
|
|
@ -32,7 +32,7 @@ def init_dist(backend='nccl', **kwargs):
|
|||
def main():
|
||||
#### options
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_exd_imgset_bigswitch.yml')
|
||||
parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_exd_imgset_bigswitch_att_invariance.yml')
|
||||
parser.add_argument('--launcher', choices=['none', 'pytorch'], default='none', help='job launcher')
|
||||
parser.add_argument('--local_rank', type=int, default=0)
|
||||
args = parser.parse_args()
|
||||
|
|
Loading…
Reference in New Issue
Block a user