Get rid of old byol net wrapping
Simplifies and makes this usable with DLAS' multi-gpu trainer
This commit is contained in:
parent
119f17c808
commit
1a2b9fa130
|
@ -140,91 +140,21 @@ class MLP(nn.Module):
|
|||
return self.net(x)
|
||||
|
||||
|
||||
# A wrapper class for training against networks that do not collapse into a small-dimensioned latent.
|
||||
class StructuralMLP(nn.Module):
|
||||
def __init__(self, dim, projection_size, hidden_size=4096):
|
||||
super().__init__()
|
||||
b, c, h, w = dim
|
||||
flattened_dim = c * h // 4 * w // 4
|
||||
self.net = nn.Sequential(
|
||||
nn.Conv2d(c, c, kernel_size=3, padding=1, stride=2),
|
||||
nn.BatchNorm2d(c),
|
||||
nn.ReLU(inplace=True),
|
||||
nn.Conv2d(c, c, kernel_size=3, padding=1, stride=2),
|
||||
nn.BatchNorm2d(c),
|
||||
nn.ReLU(inplace=True),
|
||||
nn.Flatten(),
|
||||
nn.Linear(flattened_dim, hidden_size),
|
||||
nn.BatchNorm1d(hidden_size),
|
||||
nn.ReLU(inplace=True),
|
||||
nn.Linear(hidden_size, projection_size)
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
return self.net(x)
|
||||
|
||||
|
||||
# a wrapper class for the base neural network
|
||||
# will manage the interception of the hidden layer output
|
||||
# and pipe it into the projecter and predictor nets
|
||||
class NetWrapper(nn.Module):
|
||||
def __init__(self, net, projection_size, projection_hidden_size, layer=-2, use_structural_mlp=False):
|
||||
def __init__(self, net, latent_size, projection_size, projection_hidden_size):
|
||||
super().__init__()
|
||||
self.net = net
|
||||
self.layer = layer
|
||||
|
||||
self.projector = None
|
||||
self.latent_size = latent_size
|
||||
self.projection_size = projection_size
|
||||
self.projection_hidden_size = projection_hidden_size
|
||||
self.structural_mlp = use_structural_mlp
|
||||
|
||||
self.hidden = None
|
||||
self.hook_registered = False
|
||||
|
||||
def _find_layer(self):
|
||||
if type(self.layer) == str:
|
||||
modules = dict([*self.net.named_modules()])
|
||||
return modules.get(self.layer, None)
|
||||
elif type(self.layer) == int:
|
||||
children = [*self.net.children()]
|
||||
return children[self.layer]
|
||||
return None
|
||||
|
||||
def _hook(self, _, __, output):
|
||||
self.hidden = output
|
||||
|
||||
def _register_hook(self):
|
||||
layer = self._find_layer()
|
||||
assert layer is not None, f'hidden layer ({self.layer}) not found'
|
||||
handle = layer.register_forward_hook(self._hook)
|
||||
self.hook_registered = True
|
||||
|
||||
@singleton('projector')
|
||||
def _get_projector(self, hidden):
|
||||
if self.structural_mlp:
|
||||
projector = StructuralMLP(hidden.shape, self.projection_size, self.projection_hidden_size)
|
||||
else:
|
||||
_, dim = hidden.flatten(1,-1).shape
|
||||
projector = MLP(dim, self.projection_size, self.projection_hidden_size)
|
||||
return projector.to(hidden)
|
||||
|
||||
def get_representation(self, **kwargs):
|
||||
if self.layer == -1:
|
||||
return self.net(**kwargs)
|
||||
|
||||
if not self.hook_registered:
|
||||
self._register_hook()
|
||||
|
||||
unused = self.net(**kwargs)
|
||||
hidden = self.hidden
|
||||
self.hidden = None
|
||||
assert hidden is not None, f'hidden layer {self.layer} never emitted an output'
|
||||
return hidden
|
||||
self.projector = MLP(latent_size, self.projection_size, self.projection_hidden_size)
|
||||
|
||||
def forward(self, **kwargs):
|
||||
representation = self.get_representation(**kwargs)
|
||||
projector = self._get_projector(representation)
|
||||
projection = checkpoint(projector, representation)
|
||||
representation = self.net(**kwargs)
|
||||
projection = checkpoint(self.projector, representation)
|
||||
return projection
|
||||
|
||||
|
||||
|
@ -233,33 +163,23 @@ class BYOL(nn.Module):
|
|||
self,
|
||||
net,
|
||||
image_size,
|
||||
hidden_layer=-2,
|
||||
latent_size,
|
||||
projection_size=256,
|
||||
projection_hidden_size=4096,
|
||||
moving_average_decay=0.99,
|
||||
use_momentum=True,
|
||||
structural_mlp=False,
|
||||
contrastive=False,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.online_encoder = NetWrapper(net, projection_size, projection_hidden_size, layer=hidden_layer,
|
||||
use_structural_mlp=structural_mlp)
|
||||
|
||||
self.online_encoder = NetWrapper(net, latent_size, projection_size, projection_hidden_size)
|
||||
self.aug = PointwiseAugmentor(image_size)
|
||||
self.use_momentum = use_momentum
|
||||
self.contrastive = contrastive
|
||||
self.target_encoder = None
|
||||
self.target_ema_updater = EMA(moving_average_decay)
|
||||
|
||||
self.online_predictor = MLP(projection_size, projection_size, projection_hidden_size)
|
||||
|
||||
# get device of network and make wrapper same device
|
||||
device = get_module_device(net)
|
||||
self.to(device)
|
||||
|
||||
# send a mock image tensor to instantiate singleton parameters
|
||||
self.forward(torch.randn(2, 3, image_size, image_size, device=device))
|
||||
self.target_encoder = None
|
||||
self._get_target_encoder()
|
||||
|
||||
@singleton('target_encoder')
|
||||
def _get_target_encoder(self):
|
||||
|
@ -345,7 +265,7 @@ class BYOL(nn.Module):
|
|||
self.logs_loss = loss.detach()
|
||||
self.logs_closs = contrastive_loss.detach()
|
||||
|
||||
return loss - contrastive_los00s
|
||||
return loss - contrastive_loss
|
||||
|
||||
def forward(self, image):
|
||||
if self.contrastive:
|
||||
|
@ -370,4 +290,4 @@ if __name__ == '__main__':
|
|||
@register_model
|
||||
def register_pixel_local_byol(opt_net, opt):
|
||||
subnet = create_model(opt, opt_net['subnet'])
|
||||
return BYOL(subnet, opt_net['image_size'], opt_net['hidden_layer'], contrastive=opt_net['contrastive'])
|
||||
return BYOL(subnet, opt_net['image_size'], opt_net['latent_size'], contrastive=opt_net['contrastive'])
|
Loading…
Reference in New Issue
Block a user