Move datasets to INTER_AREA interpolation for downsizing
Looks **FAR** better visually
This commit is contained in:
parent
d56745b2ec
commit
1ba01d69b5
|
@ -68,9 +68,9 @@ class BaseUnsupervisedImageDataset(data.Dataset):
|
|||
for hq, hq_ref, hq_mask, hq_center in zip(imgs_hq, refs_hq, masks_hq, centers_hq):
|
||||
# It is assumed that the target size is a square.
|
||||
target_size = (self.target_hq_size, self.target_hq_size)
|
||||
hqs_adjusted.append(cv2.resize(hq, target_size, interpolation=cv2.INTER_LINEAR))
|
||||
hq_refs_adjusted.append(cv2.resize(hq_ref, target_size, interpolation=cv2.INTER_LINEAR))
|
||||
hq_masks_adjusted.append(cv2.resize(hq_mask, target_size, interpolation=cv2.INTER_LINEAR))
|
||||
hqs_adjusted.append(cv2.resize(hq, target_size, interpolation=cv2.INTER_AREA))
|
||||
hq_refs_adjusted.append(cv2.resize(hq_ref, target_size, interpolation=cv2.INTER_AREA))
|
||||
hq_masks_adjusted.append(cv2.resize(hq_mask, target_size, interpolation=cv2.INTER_AREA))
|
||||
hq_centers_adjusted.append(self.resize_point(hq_center, (h, w), target_size))
|
||||
h, w = self.target_hq_size, self.target_hq_size
|
||||
else:
|
||||
|
@ -97,9 +97,9 @@ class BaseUnsupervisedImageDataset(data.Dataset):
|
|||
lms.append(hq_mask)
|
||||
lcs.append(hq_center)
|
||||
else:
|
||||
ls.append(cv2.resize(hq, (h // self.scale, w // self.scale), interpolation=cv2.INTER_LINEAR))
|
||||
lrs.append(cv2.resize(hq_ref, (h // self.scale, w // self.scale), interpolation=cv2.INTER_LINEAR))
|
||||
lms.append(cv2.resize(hq_mask, (h // self.scale, w // self.scale), interpolation=cv2.INTER_LINEAR))
|
||||
ls.append(cv2.resize(hq, (h // self.scale, w // self.scale), interpolation=cv2.INTER_AREA))
|
||||
lrs.append(cv2.resize(hq_ref, (h // self.scale, w // self.scale), interpolation=cv2.INTER_AREA))
|
||||
lms.append(cv2.resize(hq_mask, (h // self.scale, w // self.scale), interpolation=cv2.INTER_AREA))
|
||||
lcs.append(self.resize_point(hq_center, (h, w), ls[0].shape[:2]))
|
||||
# Corrupt the LQ image (only in eval mode)
|
||||
if not self.for_eval:
|
||||
|
|
|
@ -40,7 +40,7 @@ class MultiScaleDataset(data.Dataset):
|
|||
return image[:, left:left+h, :]
|
||||
|
||||
def recursively_extract_patches(self, input_img, result_list, depth):
|
||||
if depth > self.num_scales:
|
||||
if depth >= self.num_scales:
|
||||
return
|
||||
patch_size = self.hq_size_cap // (2 ** depth)
|
||||
# First pull the four sub-patches.
|
||||
|
@ -48,7 +48,7 @@ class MultiScaleDataset(data.Dataset):
|
|||
input_img[:patch_size, patch_size:],
|
||||
input_img[patch_size:, :patch_size],
|
||||
input_img[patch_size:, patch_size:]]
|
||||
result_list.extend([cv2.resize(p, (self.tile_size, self.tile_size), interpolation=cv2.INTER_LINEAR) for p in patches])
|
||||
result_list.extend([cv2.resize(p, (self.tile_size, self.tile_size), interpolation=cv2.INTER_AREA) for p in patches])
|
||||
for p in patches:
|
||||
self.recursively_extract_patches(p, result_list, depth+1)
|
||||
|
||||
|
@ -59,8 +59,8 @@ class MultiScaleDataset(data.Dataset):
|
|||
img_full = util.channel_convert(img_full.shape[2], 'RGB', [img_full])[0]
|
||||
img_full = util.augment([img_full], True, True)[0]
|
||||
img_full = self.get_square_image(img_full)
|
||||
img_full = cv2.resize(img_full, (self.hq_size_cap, self.hq_size_cap), interpolation=cv2.INTER_LINEAR)
|
||||
patches_hq = [cv2.resize(img_full, (self.tile_size, self.tile_size), interpolation=cv2.INTER_LINEAR)]
|
||||
img_full = cv2.resize(img_full, (self.hq_size_cap, self.hq_size_cap), interpolation=cv2.INTER_AREA)
|
||||
patches_hq = [cv2.resize(img_full, (self.tile_size, self.tile_size), interpolation=cv2.INTER_AREA)]
|
||||
self.recursively_extract_patches(img_full, patches_hq, 1)
|
||||
|
||||
# BGR to RGB, HWC to CHW, numpy to tensor
|
||||
|
@ -75,24 +75,34 @@ class MultiScaleDataset(data.Dataset):
|
|||
def __len__(self):
|
||||
return len(self.paths_hq)
|
||||
|
||||
class MultiscaleTreeNode:
|
||||
def __init__(self, index, parent):
|
||||
self.index = index
|
||||
self.parent = parent
|
||||
self.children = []
|
||||
|
||||
def add_child(self, child):
|
||||
self.children.append(child)
|
||||
return child
|
||||
|
||||
|
||||
def build_multiscale_patch_index_map(depth):
|
||||
if depth < 0:
|
||||
return
|
||||
recursive_list = []
|
||||
map = (0, recursive_list)
|
||||
_build_multiscale_patch_index_map(depth, 1, recursive_list)
|
||||
return map
|
||||
root = MultiscaleTreeNode(0, None)
|
||||
leaves = []
|
||||
_build_multiscale_patch_index_map(depth-1, 1, root, leaves)
|
||||
return leaves
|
||||
|
||||
|
||||
def _build_multiscale_patch_index_map(depth, ind, recursive_list):
|
||||
if depth <= 0:
|
||||
return ind
|
||||
patches = [(ind+i, []) for i in range(4)]
|
||||
recursive_list.extend(patches)
|
||||
def _build_multiscale_patch_index_map(depth, ind, node, leaves):
|
||||
subnodes = [node.add_child(MultiscaleTreeNode(ind+i, node)) for i in range(4)]
|
||||
ind += 4
|
||||
for _, p in patches:
|
||||
ind = _build_multiscale_patch_index_map(depth-1, ind, p)
|
||||
if depth == 1:
|
||||
leaves.extend(subnodes)
|
||||
else:
|
||||
for n in subnodes:
|
||||
ind = _build_multiscale_patch_index_map(depth-1, ind, n, leaves)
|
||||
return ind
|
||||
|
||||
|
||||
|
@ -109,18 +119,19 @@ if __name__ == '__main__':
|
|||
ds = MultiScaleDataset(opt)
|
||||
import os
|
||||
os.makedirs("debug", exist_ok=True)
|
||||
multiscale_map = build_multiscale_patch_index_map(4)
|
||||
for i in range(900, len(ds)):
|
||||
multiscale_tree = build_multiscale_patch_index_map(4)
|
||||
for i in range(500, len(ds)):
|
||||
quadrant=2
|
||||
print(i)
|
||||
o = ds[i]
|
||||
o = ds[random.randint(0, len(ds))]
|
||||
k = 'HQ'
|
||||
v = o['HQ']
|
||||
#for j, img in enumerate(v):
|
||||
# torchvision.utils.save_image(img.unsqueeze(0), "debug/%i_%s_%i.png" % (i, k, j))
|
||||
torchvision.utils.save_image(v[0].unsqueeze(0), "debug/%i_%s_0.png" % (i, k))
|
||||
map_tuple = multiscale_map[1][quadrant]
|
||||
while map_tuple[1]:
|
||||
ind = map_tuple[0]
|
||||
torchvision.utils.save_image(v[ind].unsqueeze(0), "debug/%i_%s_%i.png" % (i, k, ind+1))
|
||||
map_tuple = map_tuple[1][quadrant]
|
||||
tree_ind = random.randint(0, len(multiscale_tree))
|
||||
node = multiscale_tree[tree_ind]
|
||||
depth = 0
|
||||
while node is not None:
|
||||
torchvision.utils.save_image(v[node.index].unsqueeze(0), "debug/%i_%s_%i.png" % (i, k, depth))
|
||||
depth += 1
|
||||
node = node.parent
|
Loading…
Reference in New Issue
Block a user