diff --git a/codes/scripts/extract_subimages_with_ref.py b/codes/scripts/extract_subimages_with_ref.py index 7bde324c..706a5164 100644 --- a/codes/scripts/extract_subimages_with_ref.py +++ b/codes/scripts/extract_subimages_with_ref.py @@ -13,18 +13,19 @@ import torch def main(): split_img = False opt = {} - opt['n_thread'] = 16 + opt['n_thread'] = 7 opt['compression_level'] = 90 # JPEG compression quality rating. # CV_IMWRITE_PNG_COMPRESSION from 0 to 9. A higher value means a smaller size and longer # compression time. If read raw images during training, use 0 for faster IO speed. opt['dest'] = 'file' - opt['input_folder'] = 'F:\\4k6k\\datasets\\ns_images\\imagesets\\imgset2' - opt['save_folder'] = 'F:\\4k6k\\datasets\\ns_images\\vixen\\USELESS_DELETE_ME' - opt['crop_sz'] = [1024, 2048] # the size of each sub-image - opt['step'] = [1024, 2048] # step of the sliding crop window - opt['thres_sz'] = 512 # size threshold - opt['resize_final_img'] = [.5, .25] + opt['input_folder'] = 'F:\\4k6k\\datasets\\ns_images\\imagesets\\images' + opt['save_folder'] = 'F:\\4k6k\\datasets\\ns_images\\imagesets\\256_with_ref_v3' + opt['crop_sz'] = [512, 1024, 2048] # the size of each sub-image + opt['step'] = [256, 512, 1024] # step of the sliding crop window + opt['exclusions'] = [[],[],[]] # image names matching these terms wont be included in the processing. + opt['thres_sz'] = 256 # size threshold + opt['resize_final_img'] = [.5, .25, .125] opt['only_resize'] = False opt['vertical_split'] = False opt['input_image_max_size_before_being_halved'] = 5500 # As described, images larger than this dimensional size will be halved before anything else is done. @@ -239,7 +240,14 @@ class TiledDataset(data.Dataset): assert success results = [(ref_buffer, (-1,-1), (-1,-1))] - for crop_sz, resize_factor, step in zip(self.opt['crop_sz'], self.opt['resize_final_img'], self.opt['step']): + for crop_sz, exclusions, resize_factor, step in zip(self.opt['crop_sz'], self.opt['exclusions'], self.opt['resize_final_img'], self.opt['step']): + excluded = False + for exc in exclusions: + if exc in path: + excluded = True + break; + if excluded: + continue results.extend(self.get_for_scale(img, crop_sz, step, resize_factor, ref_resize_factor)) return results, path