More fixes to use_gpt_tts

This commit is contained in:
James Betker 2022-01-07 22:30:55 -07:00
parent 68090ac3e9
commit 1f6a5310b8

View File

@ -1,4 +1,5 @@
import argparse
import os
import random
import torch
@ -9,6 +10,7 @@ from tokenizers import Tokenizer
from data.audio.paired_voice_audio_dataset import CharacterTokenizer
from data.audio.unsupervised_audio_dataset import load_audio
from data.audio.voice_tokenizer import VoiceBpeTokenizer
from data.util import is_audio_file, find_files_of_type
from models.tacotron2.text import text_to_sequence
from scripts.audio.gen.speech_synthesis_utils import do_spectrogram_diffusion, \
@ -86,14 +88,16 @@ if __name__ == '__main__':
parser.add_argument('-diffusion_model_name', type=str, help='Name of the diffusion model in opt.', default='generator')
parser.add_argument('-diffusion_model_path', type=str, help='Diffusion model checkpoint to load.', default='X:\\dlas\\experiments\\train_diffusion_vocoder_with_cond_new_dvae_full\\models\\6100_generator_ema.pth')
parser.add_argument('-dvae_model_name', type=str, help='Name of the DVAE model in opt.', default='dvae')
parser.add_argument('-opt_gpt_tts', type=str, help='Path to options YAML file used to train the GPT-TTS model', default='X:\\dlas\\experiments\\train_gpt_unified_finetune_tts.yml')
parser.add_argument('-opt_gpt_tts', type=str, help='Path to options YAML file used to train the GPT-TTS model', default='X:\\dlas\\experiments\\train_gpt_tts_unified.yml')
parser.add_argument('-gpt_tts_model_name', type=str, help='Name of the GPT TTS model in opt.', default='gpt')
parser.add_argument('-gpt_tts_model_path', type=str, help='GPT TTS model checkpoint to load.', default='X:\\dlas\\experiments\\train_gpt_unified_finetune_tts_libri_all_and_hifi_no_unsupervised\\models\\17500_gpt.pth')
parser.add_argument('-gpt_tts_model_path', type=str, help='GPT TTS model checkpoint to load.', default='X:\\dlas\\experiments\\train_gpt_tts_unified\\models\\30500_gpt.pth')
parser.add_argument('-text', type=str, help='Text to speak.', default="I am a language model that has learned to speak.")
parser.add_argument('-cond_path', type=str, help='Path to condioning sample.', default='')
parser.add_argument('-cond_preset', type=str, help='Use a preset conditioning voice (defined above). Overrides cond_path.', default='libri_test')
parser.add_argument('-num_samples', type=int, help='How many outputs to produce.', default=1)
parser.add_argument('-num_samples', type=int, help='How many outputs to produce.', default=8)
parser.add_argument('-output_path', type=str, help='Where to store outputs.', default='../results/use_gpt_tts')
args = parser.parse_args()
os.makedirs(args.output_path, exist_ok=True)
# libritts_text = 'fall passed so quickly, there was so much going on around him, the tree quite forgot to look to himself.'
print("Loading GPT TTS..")
@ -103,11 +107,9 @@ if __name__ == '__main__':
gpt = load_model_from_config(preloaded_options=gpt_opt, model_name=args.gpt_tts_model_name, also_load_savepoint=False, load_path=args.gpt_tts_model_path, strict_load=False)
print("Loading data..")
tokenizer = CharacterTokenizer()
tokenizer = VoiceBpeTokenizer('../experiments/bpe_lowercase_asr_256.json')
text = torch.IntTensor(tokenizer.encode(args.text)).unsqueeze(0).cuda()
text = F.pad(text, (0,1)) # This may not be necessary.
paired_text_length = gpt_opt['datasets']['train']['max_paired_text_length']
assert paired_text_length >= text.shape[1]
cond_path = args.cond_path if args.cond_preset is None else preselected_cond_voices[args.cond_preset]
conds, cond_wav = load_conditioning(cond_path)
@ -132,4 +134,4 @@ if __name__ == '__main__':
code = fix_autoregressive_output(codes[b], stop_token).unsqueeze(0)
wav = do_spectrogram_diffusion(diffusion, dvae, diffuser, code, cond_wav,
spectrogram_compression_factor=128, plt_spec=False)
torchaudio.save(f'gpt_tts_output_{b}.wav', wav.squeeze(0).cpu(), 11025)
torchaudio.save(os.path.join(args.output_path, f'gpt_tts_output_{b}.wav'), wav.squeeze(0).cpu(), 11025)