support x-transformers in text_voice_clip and support relative positional embeddings
This commit is contained in:
parent
9b90472e15
commit
1feade23ff
|
@ -57,10 +57,11 @@ class CheckpointedXTransformerEncoder(nn.Module):
|
||||||
Wraps a ContinuousTransformerWrapper and applies CheckpointedLayer to each layer and permutes from channels-mid
|
Wraps a ContinuousTransformerWrapper and applies CheckpointedLayer to each layer and permutes from channels-mid
|
||||||
to channels-last that XTransformer expects.
|
to channels-last that XTransformer expects.
|
||||||
"""
|
"""
|
||||||
def __init__(self, needs_permute=True, checkpoint=True, **xtransformer_kwargs):
|
def __init__(self, needs_permute=True, exit_permute=True, checkpoint=True, **xtransformer_kwargs):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.transformer = ContinuousTransformerWrapper(**xtransformer_kwargs)
|
self.transformer = ContinuousTransformerWrapper(**xtransformer_kwargs)
|
||||||
self.needs_permute = needs_permute
|
self.needs_permute = needs_permute
|
||||||
|
self.exit_permute = exit_permute
|
||||||
|
|
||||||
if not checkpoint:
|
if not checkpoint:
|
||||||
return
|
return
|
||||||
|
@ -72,7 +73,9 @@ class CheckpointedXTransformerEncoder(nn.Module):
|
||||||
if self.needs_permute:
|
if self.needs_permute:
|
||||||
x = x.permute(0,2,1)
|
x = x.permute(0,2,1)
|
||||||
h = self.transformer(x, **kwargs)
|
h = self.transformer(x, **kwargs)
|
||||||
return h.permute(0,2,1)
|
if self.exit_permute:
|
||||||
|
h = h.permute(0,2,1)
|
||||||
|
return h
|
||||||
|
|
||||||
|
|
||||||
class ResBlock(TimestepBlock):
|
class ResBlock(TimestepBlock):
|
||||||
|
|
|
@ -3,7 +3,9 @@ import torch.nn as nn
|
||||||
import torch.nn.functional as F
|
import torch.nn.functional as F
|
||||||
from einops import rearrange
|
from einops import rearrange
|
||||||
from torch import einsum
|
from torch import einsum
|
||||||
|
from x_transformers import Encoder
|
||||||
|
|
||||||
|
from models.audio.tts.unet_diffusion_tts7 import CheckpointedXTransformerEncoder
|
||||||
from models.lucidrains.dalle.transformer import Transformer
|
from models.lucidrains.dalle.transformer import Transformer
|
||||||
from trainer.networks import register_model
|
from trainer.networks import register_model
|
||||||
from utils.util import opt_get
|
from utils.util import opt_get
|
||||||
|
@ -43,40 +45,69 @@ class VoiceCLIP(nn.Module):
|
||||||
text_mask_percentage=0,
|
text_mask_percentage=0,
|
||||||
voice_mask_percentage=0,
|
voice_mask_percentage=0,
|
||||||
wav_token_compression=1024,
|
wav_token_compression=1024,
|
||||||
|
use_xformers=False,
|
||||||
):
|
):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.text_emb = nn.Embedding(num_text_tokens, dim_text)
|
self.text_emb = nn.Embedding(num_text_tokens, dim_text)
|
||||||
self.text_pos_emb = nn.Embedding(text_seq_len, dim_text)
|
|
||||||
self.text_transformer = Transformer(causal=False, seq_len=text_seq_len, dim=dim_text, depth=text_enc_depth,
|
|
||||||
heads=text_heads, rotary_emb=False)
|
|
||||||
self.to_text_latent = nn.Linear(dim_text, dim_latent, bias=False)
|
self.to_text_latent = nn.Linear(dim_text, dim_latent, bias=False)
|
||||||
|
|
||||||
self.speech_emb = nn.Embedding(num_speech_tokens, dim_speech)
|
self.speech_emb = nn.Embedding(num_speech_tokens, dim_speech)
|
||||||
self.speech_pos_emb = nn.Embedding(num_speech_tokens, dim_speech)
|
|
||||||
self.speech_transformer = Transformer(causal=False, seq_len=speech_seq_len, dim=dim_speech,
|
|
||||||
depth=speech_enc_depth, heads=speech_heads, rotary_emb=False)
|
|
||||||
self.to_speech_latent = nn.Linear(dim_speech, dim_latent, bias=False)
|
self.to_speech_latent = nn.Linear(dim_speech, dim_latent, bias=False)
|
||||||
|
|
||||||
|
if use_xformers:
|
||||||
|
self.text_transformer = CheckpointedXTransformerEncoder(
|
||||||
|
needs_permute=False,
|
||||||
|
exit_permute=False,
|
||||||
|
max_seq_len=-1,
|
||||||
|
use_pos_emb=False,
|
||||||
|
attn_layers=Encoder(
|
||||||
|
dim=dim_text,
|
||||||
|
depth=text_enc_depth,
|
||||||
|
heads=text_heads,
|
||||||
|
ff_dropout=.1,
|
||||||
|
ff_mult=2,
|
||||||
|
attn_dropout=.1,
|
||||||
|
use_rmsnorm=True,
|
||||||
|
ff_glu=True,
|
||||||
|
rotary_pos_emb=True,
|
||||||
|
))
|
||||||
|
self.speech_transformer = CheckpointedXTransformerEncoder(
|
||||||
|
needs_permute=False,
|
||||||
|
exit_permute=False,
|
||||||
|
max_seq_len=-1,
|
||||||
|
use_pos_emb=False,
|
||||||
|
attn_layers=Encoder(
|
||||||
|
dim=dim_speech,
|
||||||
|
depth=speech_enc_depth,
|
||||||
|
heads=speech_heads,
|
||||||
|
ff_dropout=.1,
|
||||||
|
ff_mult=2,
|
||||||
|
attn_dropout=.1,
|
||||||
|
use_rmsnorm=True,
|
||||||
|
ff_glu=True,
|
||||||
|
rotary_pos_emb=True,
|
||||||
|
))
|
||||||
|
else:
|
||||||
|
self.text_transformer = Transformer(causal=False, seq_len=text_seq_len, dim=dim_text, depth=text_enc_depth,
|
||||||
|
heads=text_heads)
|
||||||
|
self.speech_transformer = Transformer(causal=False, seq_len=speech_seq_len, dim=dim_speech,
|
||||||
|
depth=speech_enc_depth, heads=speech_heads)
|
||||||
|
|
||||||
self.temperature = nn.Parameter(torch.tensor(1.))
|
self.temperature = nn.Parameter(torch.tensor(1.))
|
||||||
self.text_mask_percentage = text_mask_percentage
|
self.text_mask_percentage = text_mask_percentage
|
||||||
self.voice_mask_percentage = voice_mask_percentage
|
self.voice_mask_percentage = voice_mask_percentage
|
||||||
self.wav_token_compression = wav_token_compression
|
self.wav_token_compression = wav_token_compression
|
||||||
|
self.xformers = use_xformers
|
||||||
|
if not use_xformers:
|
||||||
|
self.text_pos_emb = nn.Embedding(text_seq_len, dim_text)
|
||||||
|
self.speech_pos_emb = nn.Embedding(num_speech_tokens, dim_speech)
|
||||||
|
|
||||||
def forward(
|
def forward(
|
||||||
self,
|
self,
|
||||||
text,
|
text,
|
||||||
text_lengths,
|
|
||||||
speech_tokens,
|
speech_tokens,
|
||||||
wav_lengths,
|
|
||||||
return_loss=False
|
return_loss=False
|
||||||
):
|
):
|
||||||
# This model will receive micro-batches with a ton of padding for both the text and MELs. Ameliorate this by
|
|
||||||
# chopping the inputs by the maximum actual length.
|
|
||||||
max_text_len = text_lengths.max()
|
|
||||||
text = text[:, :max_text_len]
|
|
||||||
max_mel_len = wav_lengths.max() // self.wav_token_compression
|
|
||||||
speech_tokens = speech_tokens[:, :max_mel_len]
|
|
||||||
|
|
||||||
b, device = text.shape[0], text.device
|
b, device = text.shape[0], text.device
|
||||||
if self.training:
|
if self.training:
|
||||||
text_mask = torch.rand_like(text.float()) > self.text_mask_percentage
|
text_mask = torch.rand_like(text.float()) > self.text_mask_percentage
|
||||||
|
@ -86,10 +117,11 @@ class VoiceCLIP(nn.Module):
|
||||||
voice_mask = torch.ones_like(speech_tokens.float()).bool()
|
voice_mask = torch.ones_like(speech_tokens.float()).bool()
|
||||||
|
|
||||||
text_emb = self.text_emb(text)
|
text_emb = self.text_emb(text)
|
||||||
text_emb += self.text_pos_emb(torch.arange(text.shape[1], device=device))
|
|
||||||
|
|
||||||
speech_emb = self.speech_emb(speech_tokens)
|
speech_emb = self.speech_emb(speech_tokens)
|
||||||
speech_emb += self.speech_pos_emb(torch.arange(speech_emb.shape[1], device=device))
|
|
||||||
|
if not self.xformers:
|
||||||
|
text_emb += self.text_pos_emb(torch.arange(text.shape[1], device=device))
|
||||||
|
speech_emb += self.speech_pos_emb(torch.arange(speech_emb.shape[1], device=device))
|
||||||
|
|
||||||
enc_text = self.text_transformer(text_emb, mask=text_mask)
|
enc_text = self.text_transformer(text_emb, mask=text_mask)
|
||||||
enc_speech = self.speech_transformer(speech_emb, mask=voice_mask)
|
enc_speech = self.speech_transformer(speech_emb, mask=voice_mask)
|
||||||
|
@ -120,15 +152,11 @@ def register_voice_clip(opt_net, opt):
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
clip = VoiceCLIP(text_mask_percentage=.2, voice_mask_percentage=.2)
|
clip = VoiceCLIP(text_mask_percentage=.2, voice_mask_percentage=.2, use_xformers=True)
|
||||||
clip(torch.randint(0,256,(2,120)),
|
clip(torch.randint(0,256,(2,120)),
|
||||||
torch.tensor([50,100]),
|
|
||||||
torch.randint(0,8192,(2,250)),
|
torch.randint(0,8192,(2,250)),
|
||||||
torch.tensor([101,102]),
|
|
||||||
return_loss=True)
|
return_loss=True)
|
||||||
nonloss = clip(torch.randint(0,256,(2,120)),
|
nonloss = clip(torch.randint(0,256,(2,120)),
|
||||||
torch.tensor([50,100]),
|
|
||||||
torch.randint(0,8192,(2,250)),
|
torch.randint(0,8192,(2,250)),
|
||||||
torch.tensor([101,102]),
|
|
||||||
return_loss=False)
|
return_loss=False)
|
||||||
print(nonloss.shape)
|
print(nonloss.shape)
|
Loading…
Reference in New Issue
Block a user