Audio segmentor
This commit is contained in:
parent
2d3372054d
commit
1fede41b7b
142
codes/data/audio/stop_prediction_dataset.py
Normal file
142
codes/data/audio/stop_prediction_dataset.py
Normal file
|
@ -0,0 +1,142 @@
|
||||||
|
import os
|
||||||
|
import pathlib
|
||||||
|
import random
|
||||||
|
|
||||||
|
import audio2numpy
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
import torch.utils.data
|
||||||
|
import torch.nn.functional as F
|
||||||
|
from tqdm import tqdm
|
||||||
|
|
||||||
|
import models.tacotron2.layers as layers
|
||||||
|
from data.audio.nv_tacotron_dataset import load_mozilla_cv, load_voxpopuli
|
||||||
|
from models.tacotron2.taco_utils import load_wav_to_torch, load_filepaths_and_text
|
||||||
|
|
||||||
|
from models.tacotron2.text import text_to_sequence
|
||||||
|
from utils.util import opt_get
|
||||||
|
|
||||||
|
|
||||||
|
def get_similar_files_libritts(filename):
|
||||||
|
filedir = os.path.dirname(filename)
|
||||||
|
return list(pathlib.Path(filedir).glob('*.wav'))
|
||||||
|
|
||||||
|
|
||||||
|
class StopPredictionDataset(torch.utils.data.Dataset):
|
||||||
|
"""
|
||||||
|
1) loads audio,text pairs
|
||||||
|
2) normalizes text and converts them to sequences of one-hot vectors
|
||||||
|
3) computes mel-spectrograms from audio files.
|
||||||
|
"""
|
||||||
|
def __init__(self, hparams):
|
||||||
|
self.path = hparams['path']
|
||||||
|
if not isinstance(self.path, list):
|
||||||
|
self.path = [self.path]
|
||||||
|
|
||||||
|
fetcher_mode = opt_get(hparams, ['fetcher_mode'], 'lj')
|
||||||
|
if not isinstance(fetcher_mode, list):
|
||||||
|
fetcher_mode = [fetcher_mode]
|
||||||
|
assert len(self.path) == len(fetcher_mode)
|
||||||
|
|
||||||
|
self.audiopaths_and_text = []
|
||||||
|
for p, fm in zip(self.path, fetcher_mode):
|
||||||
|
if fm == 'lj' or fm == 'libritts':
|
||||||
|
fetcher_fn = load_filepaths_and_text
|
||||||
|
self.get_similar_files = get_similar_files_libritts
|
||||||
|
elif fm == 'voxpopuli':
|
||||||
|
fetcher_fn = load_voxpopuli
|
||||||
|
self.get_similar_files = None # TODO: Fix.
|
||||||
|
else:
|
||||||
|
raise NotImplementedError()
|
||||||
|
self.audiopaths_and_text.extend(fetcher_fn(p))
|
||||||
|
self.sampling_rate = hparams.sampling_rate
|
||||||
|
self.input_sample_rate = opt_get(hparams, ['input_sample_rate'], self.sampling_rate)
|
||||||
|
self.stft = layers.TacotronSTFT(
|
||||||
|
hparams.filter_length, hparams.hop_length, hparams.win_length,
|
||||||
|
hparams.n_mel_channels, hparams.sampling_rate, hparams.mel_fmin,
|
||||||
|
hparams.mel_fmax)
|
||||||
|
random.seed(hparams.seed)
|
||||||
|
random.shuffle(self.audiopaths_and_text)
|
||||||
|
self.max_mel_len = opt_get(hparams, ['max_mel_length'], None)
|
||||||
|
self.max_text_len = opt_get(hparams, ['max_text_length'], None)
|
||||||
|
|
||||||
|
def get_mel(self, filename):
|
||||||
|
filename = str(filename)
|
||||||
|
if filename.endswith('.wav'):
|
||||||
|
audio, sampling_rate = load_wav_to_torch(filename)
|
||||||
|
else:
|
||||||
|
audio, sampling_rate = audio2numpy.audio_from_file(filename)
|
||||||
|
audio = torch.tensor(audio)
|
||||||
|
|
||||||
|
if sampling_rate != self.input_sample_rate:
|
||||||
|
if sampling_rate < self.input_sample_rate:
|
||||||
|
print(f'{filename} has a sample rate of {sampling_rate} which is lower than the requested sample rate of {self.input_sample_rate}. This is not a good idea.')
|
||||||
|
audio_norm = torch.nn.functional.interpolate(audio.unsqueeze(0).unsqueeze(1), scale_factor=self.input_sample_rate/sampling_rate, mode='nearest', recompute_scale_factor=False).squeeze()
|
||||||
|
else:
|
||||||
|
audio_norm = audio
|
||||||
|
if audio_norm.std() > 1:
|
||||||
|
print(f"Something is very wrong with the given audio. std_dev={audio_norm.std()}. file={filename}")
|
||||||
|
return None
|
||||||
|
audio_norm.clip_(-1, 1)
|
||||||
|
audio_norm = audio_norm.unsqueeze(0)
|
||||||
|
audio_norm = torch.autograd.Variable(audio_norm, requires_grad=False)
|
||||||
|
if self.input_sample_rate != self.sampling_rate:
|
||||||
|
ratio = self.sampling_rate / self.input_sample_rate
|
||||||
|
audio_norm = torch.nn.functional.interpolate(audio_norm.unsqueeze(0), scale_factor=ratio, mode='area').squeeze(0)
|
||||||
|
melspec = self.stft.mel_spectrogram(audio_norm)
|
||||||
|
melspec = torch.squeeze(melspec, 0)
|
||||||
|
|
||||||
|
return melspec
|
||||||
|
|
||||||
|
def __getitem__(self, index):
|
||||||
|
path = self.audiopaths_and_text[index][0]
|
||||||
|
similar_files = self.get_similar_files(path)
|
||||||
|
mel = self.get_mel(path)
|
||||||
|
terms = torch.zeros(mel.shape[1])
|
||||||
|
terms[-1] = 1
|
||||||
|
while mel.shape[-1] < self.max_mel_len:
|
||||||
|
another_file = random.choice(similar_files)
|
||||||
|
another_mel = self.get_mel(another_file)
|
||||||
|
oterms = torch.zeros(another_mel.shape[1])
|
||||||
|
oterms[-1] = 1
|
||||||
|
mel = torch.cat([mel, another_mel], dim=-1)
|
||||||
|
terms = torch.cat([terms, oterms], dim=-1)
|
||||||
|
mel = mel[:, :self.max_mel_len]
|
||||||
|
terms = terms[:self.max_mel_len]
|
||||||
|
|
||||||
|
|
||||||
|
return {
|
||||||
|
'padded_mel': mel,
|
||||||
|
'termination_mask': terms,
|
||||||
|
}
|
||||||
|
|
||||||
|
def __len__(self):
|
||||||
|
return len(self.audiopaths_and_text)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
params = {
|
||||||
|
'mode': 'stop_prediction',
|
||||||
|
'path': 'E:\\audio\\LibriTTS\\train-clean-360_list.txt',
|
||||||
|
'phase': 'train',
|
||||||
|
'n_workers': 0,
|
||||||
|
'batch_size': 16,
|
||||||
|
'fetcher_mode': 'libritts',
|
||||||
|
'max_mel_length': 800,
|
||||||
|
#'return_wavs': True,
|
||||||
|
#'input_sample_rate': 22050,
|
||||||
|
#'sampling_rate': 8000
|
||||||
|
}
|
||||||
|
from data import create_dataset, create_dataloader
|
||||||
|
|
||||||
|
ds, c = create_dataset(params, return_collate=True)
|
||||||
|
dl = create_dataloader(ds, params, collate_fn=c, shuffle=True)
|
||||||
|
i = 0
|
||||||
|
m = None
|
||||||
|
for k in range(1000):
|
||||||
|
for i, b in tqdm(enumerate(dl)):
|
||||||
|
continue
|
||||||
|
pm = b['padded_mel']
|
||||||
|
pm = torch.nn.functional.pad(pm, (0, 800-pm.shape[-1]))
|
||||||
|
m = pm if m is None else torch.cat([m, pm], dim=0)
|
||||||
|
print(m.mean(), m.std())
|
|
@ -49,7 +49,6 @@ class MelEncoder(nn.Module):
|
||||||
|
|
||||||
|
|
||||||
class GptSegmentor(nn.Module):
|
class GptSegmentor(nn.Module):
|
||||||
MAX_SYMBOLS_PER_PHRASE = 200
|
|
||||||
MAX_MEL_FRAMES = 2000 // 4
|
MAX_MEL_FRAMES = 2000 // 4
|
||||||
|
|
||||||
def __init__(self, layers=8, model_dim=512, heads=8):
|
def __init__(self, layers=8, model_dim=512, heads=8):
|
||||||
|
@ -59,30 +58,28 @@ class GptSegmentor(nn.Module):
|
||||||
self.max_mel_frames = self.MAX_MEL_FRAMES
|
self.max_mel_frames = self.MAX_MEL_FRAMES
|
||||||
self.mel_encoder = MelEncoder(model_dim)
|
self.mel_encoder = MelEncoder(model_dim)
|
||||||
self.mel_pos_embedding = nn.Embedding(self.MAX_MEL_FRAMES, model_dim)
|
self.mel_pos_embedding = nn.Embedding(self.MAX_MEL_FRAMES, model_dim)
|
||||||
self.gpt = Transformer(dim=model_dim, depth=layers, seq_len=2+self.MAX_SYMBOLS_PER_PHRASE+self.MAX_MEL_FRAMES, heads=heads,
|
self.gpt = Transformer(dim=model_dim, depth=layers, seq_len=self.MAX_MEL_FRAMES, heads=heads,
|
||||||
attn_dropout=.1, ff_dropout=.1, non_causal_sequence_partition=self.MAX_MEL_FRAMES)
|
attn_dropout=.1, ff_dropout=.1, non_causal_sequence_partition=self.MAX_MEL_FRAMES)
|
||||||
|
|
||||||
self.final_norm = nn.LayerNorm(model_dim)
|
self.final_norm = nn.LayerNorm(model_dim)
|
||||||
self.stop_head = nn.Linear(model_dim, 1)
|
self.stop_head = nn.Linear(model_dim, 1)
|
||||||
|
|
||||||
def forward(self, mel_inputs, mel_lengths):
|
def forward(self, mel_inputs, termination_points):
|
||||||
max_len = mel_lengths.max() # This can be done in the dataset layer, but it is easier to do here.
|
|
||||||
mel_inputs = mel_inputs[:, :, :max_len]
|
|
||||||
|
|
||||||
mel_emb = self.mel_encoder(mel_inputs)
|
mel_emb = self.mel_encoder(mel_inputs)
|
||||||
mel_lengths = mel_lengths // 4 # The encoder decimates the mel by a factor of 4.
|
|
||||||
mel_emb = mel_emb.permute(0,2,1).contiguous()
|
mel_emb = mel_emb.permute(0,2,1).contiguous()
|
||||||
mel_emb = mel_emb + self.mel_pos_embedding(torch.arange(mel_emb.shape[1], device=mel_emb.device))
|
mel_emb = mel_emb + self.mel_pos_embedding(torch.arange(mel_emb.shape[1], device=mel_emb.device))
|
||||||
|
|
||||||
enc = self.gpt(mel_emb)
|
enc = self.gpt(mel_emb)
|
||||||
|
|
||||||
|
# The MEL gets decimated to 1/4 the size by the encoder, so we need to do the same to the termination points.
|
||||||
|
termination_points = F.interpolate(termination_points.unsqueeze(1), size=mel_emb.shape[1], mode='area').squeeze()
|
||||||
|
termination_points = (termination_points > 0).float()
|
||||||
|
|
||||||
# Compute loss
|
# Compute loss
|
||||||
b, s, _ = enc.shape
|
b, s, _ = enc.shape
|
||||||
mel_pad_mask = ~get_mask_from_lengths(mel_lengths-1, s)
|
|
||||||
targets = torch.zeros((b,s), device=enc.device).masked_fill_(mel_pad_mask, 1)
|
|
||||||
stop_logits = self.final_norm(enc)
|
stop_logits = self.final_norm(enc)
|
||||||
stop_logits = self.stop_head(stop_logits)
|
stop_logits = self.stop_head(stop_logits)
|
||||||
loss = F.binary_cross_entropy_with_logits(stop_logits.squeeze(-1), targets)
|
loss = F.binary_cross_entropy_with_logits(stop_logits.squeeze(-1), termination_points)
|
||||||
|
|
||||||
return loss.mean()
|
return loss.mean()
|
||||||
|
|
||||||
|
@ -95,7 +92,7 @@ def register_gpt_segmentor(opt_net, opt):
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
gpt = GptSegmentor()
|
gpt = GptSegmentor()
|
||||||
l = gpt(torch.randn(3,80,94),
|
l = gpt(torch.randn(3,80,94),
|
||||||
torch.tensor([18,42,93]))
|
torch.zeros(3,94))
|
||||||
print(l.shape)
|
print(l.shape)
|
||||||
|
|
||||||
#o = gpt.infer(torch.randint(high=24, size=(2,60)))
|
#o = gpt.infer(torch.randint(high=24, size=(2,60)))
|
||||||
|
|
|
@ -30,14 +30,14 @@ def forward_pass(model, denoiser, data, output_dir, opt, b):
|
||||||
ground_truth_waveforms = denoiser(ground_truth_waveforms)
|
ground_truth_waveforms = denoiser(ground_truth_waveforms)
|
||||||
for i in range(pred_waveforms.shape[0]):
|
for i in range(pred_waveforms.shape[0]):
|
||||||
# Output predicted mels and waveforms.
|
# Output predicted mels and waveforms.
|
||||||
pred_mel = model.eval_state[opt['eval']['pred_mel']][i]
|
pred_mel = model.eval_state[opt['eval']['pred_mel']][0][i].unsqueeze(0)
|
||||||
pred_mel = ((pred_mel - pred_mel.mean()) / max(abs(pred_mel.min()), pred_mel.max())).unsqueeze(1)
|
pred_mel = ((pred_mel - pred_mel.mean()) / max(abs(pred_mel.min()), pred_mel.max())).unsqueeze(1)
|
||||||
torchvision.utils.save_image(pred_mel, osp.join(output_dir, f'{b}_{i}_pred_mel.png'))
|
torchvision.utils.save_image(pred_mel, osp.join(output_dir, f'{b}_{i}_pred_mel.png'))
|
||||||
audio = pred_waveforms[i][0].cpu().numpy()
|
audio = pred_waveforms[i][0].cpu().numpy()
|
||||||
wavfile.write(osp.join(output_dir, f'{b}_{i}.wav'), 22050, audio)
|
wavfile.write(osp.join(output_dir, f'{b}_{i}.wav'), 22050, audio)
|
||||||
|
|
||||||
if gt:
|
if gt:
|
||||||
gt_mel = model.eval_state[opt['eval']['ground_truth_mel']][i]
|
gt_mel = model.eval_state[opt['eval']['ground_truth_mel']][0][i].unsqueeze(0)
|
||||||
gt_mel = ((gt_mel - gt_mel.mean()) / max(abs(gt_mel.min()), gt_mel.max())).unsqueeze(1)
|
gt_mel = ((gt_mel - gt_mel.mean()) / max(abs(gt_mel.min()), gt_mel.max())).unsqueeze(1)
|
||||||
torchvision.utils.save_image(gt_mel, osp.join(output_dir, f'{b}_{i}_gt_mel.png'))
|
torchvision.utils.save_image(gt_mel, osp.join(output_dir, f'{b}_{i}_gt_mel.png'))
|
||||||
audio = ground_truth_waveforms[i][0].cpu().numpy()
|
audio = ground_truth_waveforms[i][0].cpu().numpy()
|
||||||
|
@ -54,7 +54,7 @@ if __name__ == "__main__":
|
||||||
torch.backends.cudnn.benchmark = True
|
torch.backends.cudnn.benchmark = True
|
||||||
want_metrics = False
|
want_metrics = False
|
||||||
parser = argparse.ArgumentParser()
|
parser = argparse.ArgumentParser()
|
||||||
parser.add_argument('-opt', type=str, help='Path to options YAML file.', default='../options/test_lrdvae_audio_clips.yml')
|
parser.add_argument('-opt', type=str, help='Path to options YAML file.', default='../options/test_stop_pred_dataset.yml')
|
||||||
opt = option.parse(parser.parse_args().opt, is_train=False)
|
opt = option.parse(parser.parse_args().opt, is_train=False)
|
||||||
opt = option.dict_to_nonedict(opt)
|
opt = option.dict_to_nonedict(opt)
|
||||||
utils.util.loaded_options = opt
|
utils.util.loaded_options = opt
|
||||||
|
|
|
@ -282,7 +282,7 @@ class Trainer:
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
parser = argparse.ArgumentParser()
|
parser = argparse.ArgumentParser()
|
||||||
parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_lrdvae_audio_clips.yml')
|
parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_gpt_stop_libritts.yml')
|
||||||
parser.add_argument('--launcher', choices=['none', 'pytorch'], default='none', help='job launcher')
|
parser.add_argument('--launcher', choices=['none', 'pytorch'], default='none', help='job launcher')
|
||||||
parser.add_argument('--local_rank', type=int, default=0)
|
parser.add_argument('--local_rank', type=int, default=0)
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
|
|
Loading…
Reference in New Issue
Block a user