From 20ef9cc6b44075b799cc8740f74b42eeeeb295d7 Mon Sep 17 00:00:00 2001 From: James Betker Date: Sun, 17 Jul 2022 18:24:33 -0600 Subject: [PATCH] iq checkin yeah - I'm at it again... --- .../audio/music/instrument_quantizer.py | 170 ++++++++++++++++++ codes/models/lucidrains/x_transformers.py | 2 +- codes/train.py | 2 +- codes/trainer/eval/music_diffusion_fid.py | 6 +- 4 files changed, 175 insertions(+), 5 deletions(-) create mode 100644 codes/models/audio/music/instrument_quantizer.py diff --git a/codes/models/audio/music/instrument_quantizer.py b/codes/models/audio/music/instrument_quantizer.py new file mode 100644 index 00000000..c3ec5959 --- /dev/null +++ b/codes/models/audio/music/instrument_quantizer.py @@ -0,0 +1,170 @@ +import functools + +import torch +import torch.nn as nn +import torch.nn.functional as F + +from models.diffusion.nn import timestep_embedding +from models.lucidrains.x_transformers import FeedForward, Attention, Decoder, RMSScaleShiftNorm +from trainer.networks import register_model +from utils.util import checkpoint + + +class SelfClassifyingHead(nn.Module): + def __init__(self, dim, classes, out_dim, head_depth, seq_len, dropout, init_temperature): + super().__init__() + self.seq_len = seq_len + self.num_classes = classes + self.temperature = init_temperature + self.dec = Decoder(dim=dim, depth=head_depth, heads=2, ff_dropout=dropout, ff_mult=2, attn_dropout=dropout, + use_rmsnorm=True, ff_glu=True, rotary_pos_emb=True) + self.to_classes = nn.Linear(dim, classes) + self.feedback_codebooks = nn.Linear(classes, dim, bias=False) + self.codebooks = nn.Linear(classes, out_dim, bias=False) + + @staticmethod + def _compute_perplexity(probs, mask=None): + if mask is not None: + mask_extended = mask.flatten()[:, None, None].expand(probs.shape) + probs = torch.where(mask_extended, probs, torch.zeros_like(probs)) + marginal_probs = probs.sum(dim=0) / mask.sum() + else: + marginal_probs = probs.mean(dim=0) + + perplexity = torch.exp(-torch.sum(marginal_probs * torch.log(marginal_probs + 1e-7), dim=-1)).sum() + return perplexity + + def do_ar_step(self, x, used_codes): + h = self.dec(x) + h = self.to_classes(h[:,-1]) + for uc in used_codes: + mask = torch.arange(0, self.num_classes, device=x.device).unsqueeze(0).repeat(x.shape[0],1) == uc.unsqueeze(1) + h[mask] = -torch.inf + c = F.gumbel_softmax(h, tau=self.temperature, hard=self.temperature==1)\ + + soft_c = torch.softmax(h, dim=-1) + perplexity = self._compute_perplexity(soft_c) + return c, perplexity + + def forward(self, x): + with torch.no_grad(): + # Force one of the codebook weights to zero, allowing the model to "skip" any classes it chooses. + self.codebooks.weight.data[:, 0] = 0 + + # manually perform ar regression over sequence_length=self.seq_len + stack = [x] + outputs = [] + results = [] + codes = [] + total_perplexity = 0 + for i in range(self.seq_len): + nc, perp = checkpoint(functools.partial(self.do_ar_step, used_codes=codes), torch.stack(stack, dim=1)) + codes.append(nc.argmax(-1)) + stack.append(self.feedback_codebooks(nc)) + outputs.append(self.codebooks(nc)) + results.append(torch.stack(outputs, dim=1).sum(1)) + total_perplexity = total_perplexity + perp + return results, total_perplexity / self.seq_len, torch.cat(codes, dim=-1) + + +class VectorResBlock(nn.Module): + def __init__(self, dim, dropout): + super().__init__() + self.norm = nn.BatchNorm1d(dim) + self.ff = FeedForward(dim, mult=2, glu=True, dropout=dropout, zero_init_output=True) + + def forward(self, x): + h = self.norm(x.unsqueeze(-1)).squeeze(-1) + h = self.ff(h) + return h + x + + +class InstrumentQuantizer(nn.Module): + def __init__(self, op_dim, dim, num_classes, enc_depth, head_depth, class_seq_len=5, dropout=.1, + min_temp=1, max_temp=10, temp_decay=.999): + """ + + Args: + op_dim: + dim: + num_classes: + enc_depth: + head_depth: + class_seq_len: + dropout: + min_temp: + max_temp: + temp_decay: Temperature decay. Default value of .999 decays ~50% in 1000 steps. + """ + super().__init__() + self.op_dim = op_dim + self.proj = nn.Linear(op_dim, dim) + self.encoder = nn.ModuleList([VectorResBlock(dim, dropout) for _ in range(enc_depth)]) + self.heads = SelfClassifyingHead(dim, num_classes, op_dim, head_depth, class_seq_len, dropout, max_temp) + self.min_gumbel_temperature = min_temp + self.max_gumbel_temperature = max_temp + self.gumbel_temperature_decay = temp_decay + + self.codes = torch.zeros((3000000,), dtype=torch.long) + self.internal_step = 0 + self.code_ind = 0 + self.total_codes = 0 + + def forward(self, x): + b, c, s = x.shape + px = x.permute(0,2,1) # B,S,C shape + f = px.reshape(-1, self.op_dim) + h = self.proj(f) + for lyr in self.encoder: + h = lyr(h) + + reconstructions, perplexity, codes = self.heads(h) + reconstruction_losses = torch.stack([F.mse_loss(r.reshape(b, s, c), px) for r in reconstructions]) + r_follow = torch.arange(1, reconstruction_losses.shape[0]+1, device=x.device) + reconstruction_losses = (reconstruction_losses * r_follow / r_follow.shape[0]) + self.log_codes(codes) + + return reconstruction_losses, perplexity + + def log_codes(self, codes): + if self.internal_step % 5 == 0: + l = codes.shape[0] + i = self.code_ind if (self.codes.shape[0] - self.code_ind) > l else self.codes.shape[0] - l + self.codes[i:i+l] = codes.cpu() + self.code_ind = self.code_ind + l + if self.code_ind >= self.codes.shape[0]: + self.code_ind = 0 + self.total_codes += 1 + + def get_debug_values(self, step, __): + if self.total_codes > 0: + return {'histogram_codes': self.codes[:self.total_codes], + 'temperature': self.heads.temperature} + else: + return {} + + def update_for_step(self, step, *args): + self.internal_step = step + self.heads.temperature = max( + self.max_gumbel_temperature * self.gumbel_temperature_decay**step, + self.min_gumbel_temperature, + ) + + def get_grad_norm_parameter_groups(self): + groups = { + 'encoder': list(self.encoder.parameters()), + 'heads': list(self.heads.parameters()), + 'proj': list(self.proj.parameters()), + } + return groups + + +@register_model +def register_instrument_quantizer(opt_net, opt): + return InstrumentQuantizer(**opt_net['kwargs']) + + +if __name__ == '__main__': + inp = torch.randn((4,256,200)) + model = InstrumentQuantizer(256, 512, 4096, 8, 3) + model(inp) diff --git a/codes/models/lucidrains/x_transformers.py b/codes/models/lucidrains/x_transformers.py index 895f60fe..f8528714 100644 --- a/codes/models/lucidrains/x_transformers.py +++ b/codes/models/lucidrains/x_transformers.py @@ -366,7 +366,7 @@ class RMSScaleShiftNorm(nn.Module): ss_emb = self.scale_shift_process(norm_scale_shift_inp) scale, shift = torch.chunk(ss_emb, 2, dim=-1) - if len(scale.shape) == 2: + if len(scale.shape) == 2 and len(x.shape) == 3: scale = scale.unsqueeze(1) shift = shift.unsqueeze(1) h = norm * (1 + scale) + shift diff --git a/codes/train.py b/codes/train.py index d2424ed8..9376a56a 100644 --- a/codes/train.py +++ b/codes/train.py @@ -340,7 +340,7 @@ class Trainer: if __name__ == '__main__': parser = argparse.ArgumentParser() - parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_music_cheater_gen.yml') + parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_music_instrument_quantizer.yml') parser.add_argument('--launcher', choices=['none', 'pytorch'], default='none', help='job launcher') args = parser.parse_args() opt = option.parse(args.opt, is_train=True) diff --git a/codes/trainer/eval/music_diffusion_fid.py b/codes/trainer/eval/music_diffusion_fid.py index 352a66c6..b36d33d3 100644 --- a/codes/trainer/eval/music_diffusion_fid.py +++ b/codes/trainer/eval/music_diffusion_fid.py @@ -438,18 +438,18 @@ class MusicDiffusionFid(evaluator.Evaluator): if __name__ == '__main__': diffusion = load_model_from_config('X:\\dlas\\experiments\\train_music_cheater_gen.yml', 'generator', also_load_savepoint=False, - load_path='X:\\dlas\\experiments\\train_music_cheater_gen_v5_cosine_40_lyr\\models\\19500_generator.pth' + load_path='X:\\dlas\\experiments\\train_music_cheater_gen_v5_cosine_40_lyr\\models\\40000_generator_ema.pth' ).cuda() opt_eval = {'path': 'Y:\\split\\yt-music-eval', # eval music, mostly electronica. :) #'path': 'E:\\music_eval', # this is music from the training dataset, including a lot more variety. - 'diffusion_steps': 128, # basis: 192 + 'diffusion_steps': 256, # basis: 192 'conditioning_free': True, 'conditioning_free_k': 1, 'use_ddim': False, 'clip_audio': False, 'diffusion_schedule': 'cosine', 'diffusion_type': 'cheater_gen', # Slope 1: 1.03x, 2: 1.06, 4: 1.135, 8: 1.27, 16: 1.54 #'causal': True, 'causal_slope': 4, # DONT FORGET TO INCREMENT THE STEP! #'partial_low': 128, 'partial_high': 192 } - env = {'rank': 0, 'base_path': 'D:\\tmp\\test_eval_music', 'step': 204, 'device': 'cuda', 'opt': {}} + env = {'rank': 0, 'base_path': 'D:\\tmp\\test_eval_music', 'step': 5, 'device': 'cuda', 'opt': {}} eval = MusicDiffusionFid(diffusion, opt_eval, env) fds = [] for i in range(2):