diff --git a/codes/models/classifiers/cifar_resnet.py b/codes/models/classifiers/cifar_resnet.py index 79fac29e..ceb78064 100644 --- a/codes/models/classifiers/cifar_resnet.py +++ b/codes/models/classifiers/cifar_resnet.py @@ -85,20 +85,20 @@ class ResNet(nn.Module): def __init__(self, block, num_block, num_classes=100): super().__init__() - self.in_channels = 64 + self.in_channels = 32 self.conv1 = nn.Sequential( - nn.Conv2d(3, 64, kernel_size=3, padding=1, bias=False), - nn.BatchNorm2d(64), + nn.Conv2d(3, 32, kernel_size=3, padding=1, bias=False), + nn.BatchNorm2d(32), nn.ReLU(inplace=True)) #we use a different inputsize than the original paper #so conv2_x's stride is 1 - self.conv2_x = self._make_layer(block, 64, num_block[0], 1) - self.conv3_x = self._make_layer(block, 128, num_block[1], 2) - self.conv4_x = self._make_layer(block, 256, num_block[2], 2) - self.conv5_x = self._make_layer(block, 512, num_block[3], 2) - self.avg_pool = nn.AdaptiveAvgPool2d((1, 1)) - self.fc = nn.Linear(512 * block.expansion, num_classes) + self.conv2_x = self._make_layer(block, 32, num_block[0], 1) + self.conv3_x = self._make_layer(block, 64, num_block[1], 2) + self.conv4_x = self._make_layer(block, 128, num_block[2], 2) + self.conv5_x = self._make_layer(block, 256, num_block[3], 2) + self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) + self.fc = nn.Linear(256 * block.expansion, num_classes) def _make_layer(self, block, out_channels, num_blocks, stride): """make resnet layers(by layer i didnt mean this 'layer' was the @@ -131,7 +131,7 @@ class ResNet(nn.Module): output = self.conv3_x(output) output = self.conv4_x(output) output = self.conv5_x(output) - output = self.avg_pool(output) + output = self.avgpool(output) output = output.view(output.size(0), -1) output = self.fc(output)