update tfd14 too
This commit is contained in:
parent
02ebda42f2
commit
24a78bd7d1
|
@ -4,65 +4,14 @@ import torch
|
|||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
from models.arch_util import AttentionBlock, TimestepEmbedSequential, build_local_attention_mask
|
||||
from models.arch_util import TimestepEmbedSequential
|
||||
from models.audio.music.encoders import ResEncoder16x
|
||||
from models.audio.music.transformer_diffusion13 import ConcatAttentionBlock
|
||||
from models.diffusion.nn import timestep_embedding, normalization, zero_module, conv_nd, linear
|
||||
from models.diffusion.unet_diffusion import TimestepBlock
|
||||
from trainer.networks import register_model
|
||||
from utils.util import checkpoint, print_network
|
||||
|
||||
|
||||
class SubBlock(nn.Module):
|
||||
def __init__(self, inp_dim, contraction_dim, blk_dim, heads, dropout, enable_attention_masking=False):
|
||||
super().__init__()
|
||||
self.enable_attention_masking = enable_attention_masking
|
||||
self.dropout = nn.Dropout(p=dropout)
|
||||
self.blk_emb_proj = nn.Conv1d(blk_dim, inp_dim, 1)
|
||||
self.attn = AttentionBlock(inp_dim, out_channels=contraction_dim, num_heads=heads)
|
||||
self.attnorm = nn.GroupNorm(8, contraction_dim)
|
||||
self.ff = nn.Conv1d(inp_dim+contraction_dim, contraction_dim, kernel_size=3, padding=1)
|
||||
self.ffnorm = nn.GroupNorm(8, contraction_dim)
|
||||
if self.enable_attention_masking:
|
||||
# All regions can attend to the first token, which will be the timestep embedding. Hence, fixed_region.
|
||||
self.mask = build_local_attention_mask(n=4000, l=48, fixed_region=1)
|
||||
self.mask_initialized = False
|
||||
else:
|
||||
self.mask = None
|
||||
|
||||
def forward(self, x, blk_emb):
|
||||
if self.mask is not None and not self.mask_initialized:
|
||||
self.mask = self.mask.to(x.device)
|
||||
self.mask_initialized = True
|
||||
blk_enc = self.blk_emb_proj(blk_emb)
|
||||
ah = self.dropout(self.attn(torch.cat([blk_enc, x], dim=-1), mask=self.mask))
|
||||
ah = ah[:,:,blk_emb.shape[-1]:] # Strip off the blk_emb and re-align with x.
|
||||
ah = F.gelu(self.attnorm(ah))
|
||||
h = torch.cat([ah, x], dim=1)
|
||||
hf = self.dropout(checkpoint(self.ff, h))
|
||||
hf = F.gelu(self.ffnorm(hf))
|
||||
h = torch.cat([h, hf], dim=1)
|
||||
return h
|
||||
|
||||
|
||||
class ConcatAttentionBlock(TimestepBlock):
|
||||
def __init__(self, trunk_dim, contraction_dim, heads, dropout, enable_attention_masking=False):
|
||||
super().__init__()
|
||||
self.prenorm = nn.GroupNorm(8, trunk_dim)
|
||||
self.block1 = SubBlock(trunk_dim, contraction_dim, trunk_dim, heads, dropout,
|
||||
enable_attention_masking=enable_attention_masking)
|
||||
self.block2 = SubBlock(trunk_dim+contraction_dim*2, contraction_dim, trunk_dim, heads, dropout,
|
||||
enable_attention_masking=enable_attention_masking)
|
||||
self.out = nn.Conv1d(contraction_dim*4, trunk_dim, kernel_size=1, bias=False)
|
||||
self.out.weight.data.zero_()
|
||||
|
||||
def forward(self, x, blk_emb):
|
||||
h = self.prenorm(x)
|
||||
h = self.block1(h, blk_emb)
|
||||
h = self.block2(h, blk_emb)
|
||||
h = self.out(h[:,x.shape[1]:])
|
||||
return h + x
|
||||
|
||||
|
||||
class TransformerDiffusion(nn.Module):
|
||||
"""
|
||||
A diffusion model composed entirely of stacks of transformer layers. Why would you do it any other way?
|
||||
|
@ -102,13 +51,14 @@ class TransformerDiffusion(nn.Module):
|
|||
self.time_embed = nn.Sequential(
|
||||
linear(time_embed_dim, time_embed_dim),
|
||||
nn.SiLU(),
|
||||
linear(time_embed_dim, model_channels),
|
||||
linear(time_embed_dim, time_embed_dim//4),
|
||||
)
|
||||
|
||||
self.input_converter = nn.Conv1d(input_vec_dim, model_channels, 1)
|
||||
self.unconditioned_embedding = nn.Parameter(torch.randn(1,model_channels,1))
|
||||
self.intg = nn.Conv1d(model_channels*2, model_channels, 1)
|
||||
self.layers = TimestepEmbedSequential(*[ConcatAttentionBlock(model_channels, contraction_dim, num_heads, dropout, enable_attention_masking=True) for _ in range(num_layers)])
|
||||
self.layers = TimestepEmbedSequential(*[ConcatAttentionBlock(model_channels, contraction_dim, time_embed_dim//4,
|
||||
num_heads, dropout) for _ in range(num_layers)])
|
||||
|
||||
self.out = nn.Sequential(
|
||||
normalization(model_channels),
|
||||
|
@ -128,8 +78,10 @@ class TransformerDiffusion(nn.Module):
|
|||
def get_grad_norm_parameter_groups(self):
|
||||
attn1 = list(itertools.chain.from_iterable([lyr.block1.attn.parameters() for lyr in self.layers]))
|
||||
attn2 = list(itertools.chain.from_iterable([lyr.block2.attn.parameters() for lyr in self.layers]))
|
||||
ff1 = list(itertools.chain.from_iterable([lyr.block1.ff.parameters() for lyr in self.layers]))
|
||||
ff2 = list(itertools.chain.from_iterable([lyr.block2.ff.parameters() for lyr in self.layers]))
|
||||
ff1 = list(itertools.chain.from_iterable([lyr.block1.ff1.parameters() for lyr in self.layers] +
|
||||
[lyr.block1.ff2.parameters() for lyr in self.layers]))
|
||||
ff2 = list(itertools.chain.from_iterable([lyr.block2.ff1.parameters() for lyr in self.layers] +
|
||||
[lyr.block2.ff2.parameters() for lyr in self.layers]))
|
||||
blkout_layers = list(itertools.chain.from_iterable([lyr.out.parameters() for lyr in self.layers]))
|
||||
groups = {
|
||||
'prenorms': list(itertools.chain.from_iterable([lyr.prenorm.parameters() for lyr in self.layers])),
|
||||
|
@ -163,7 +115,7 @@ class TransformerDiffusion(nn.Module):
|
|||
code_emb = F.interpolate(code_emb, size=x.shape[-1], mode='nearest')
|
||||
|
||||
with torch.autocast(x.device.type, enabled=self.enable_fp16):
|
||||
blk_emb = self.time_embed(timestep_embedding(timesteps, self.time_embed_dim)).unsqueeze(-1)
|
||||
blk_emb = self.time_embed(timestep_embedding(timesteps, self.time_embed_dim))
|
||||
x = self.inp_block(x)
|
||||
|
||||
x = self.intg(torch.cat([x, code_emb], dim=1))
|
||||
|
|
Loading…
Reference in New Issue
Block a user