gptmusic work

This commit is contained in:
James Betker 2022-06-16 15:09:47 -06:00
parent 781c43c1fc
commit 28d95e3141
4 changed files with 292 additions and 72 deletions

View File

@ -319,7 +319,7 @@ class Downsample(nn.Module):
downsampling occurs in the inner-two dimensions.
"""
def __init__(self, channels, use_conv, dims=2, out_channels=None, factor=None):
def __init__(self, channels, use_conv, dims=2, out_channels=None, factor=2):
super().__init__()
self.channels = channels
self.out_channels = out_channels or channels
@ -327,16 +327,7 @@ class Downsample(nn.Module):
self.dims = dims
ksize = 3
pad = 1
if dims == 1:
stride = 4
ksize = 5
pad = 2
elif dims == 2:
stride = 2
else:
stride = (1,2,2)
if factor is not None:
stride = factor
stride = factor
if use_conv:
self.op = conv_nd(
dims, self.channels, self.out_channels, ksize, stride=stride, padding=pad

View File

@ -6,9 +6,11 @@ from transformers import GPT2Config, GPT2Model
from models.arch_util import AttentionBlock, ResBlock
from models.audio.music.music_quantizer import MusicQuantizer
from models.audio.music.music_quantizer2 import MusicQuantizer2
from models.audio.tts.lucidrains_dvae import DiscreteVAE
from models.lucidrains.x_transformers import Encoder
from models.vqvae.vqvae import Quantize
from trainer.networks import register_model
from utils.util import opt_get, checkpoint
from utils.util import opt_get, checkpoint, ceil_multiple, print_network
class ConditioningEncoder(nn.Module):
@ -57,66 +59,106 @@ class UpperConditioningEncoder(nn.Module):
return h.mean(dim=2)
class GptMusicLower(nn.Module):
def __init__(self, dim, layers, dropout=0, num_target_vectors=512, num_target_groups=2, num_upper_vectors=64,
num_upper_groups=4, fp16=True, freeze_upper_until=0):
class UpperQuantizer(nn.Module):
def __init__(self,
spec_dim,
embedding_dim,
num_tokens):
super().__init__()
attn = []
def edim(m):
dd = max(embedding_dim//m, 128, spec_dim)
return ceil_multiple(dd, 8)
self.encoder = nn.Sequential(
ResBlock(spec_dim, out_channels=edim(6), use_conv=True, dims=1, down=True),
ResBlock(edim(6), out_channels=edim(5), use_conv=True, dims=1, down=True),
ResBlock(edim(5), out_channels=edim(4), use_conv=True, dims=1, down=True),
ResBlock(edim(4), out_channels=edim(3), use_conv=True, dims=1, down=True),
ResBlock(edim(3), out_channels=edim(3), use_conv=True, dims=1),
ResBlock(edim(3), out_channels=edim(2), use_conv=True, dims=1, down=True),
ResBlock(edim(2), out_channels=edim(2), use_conv=True, dims=1),
ResBlock(edim(2), out_channels=embedding_dim, use_conv=True, dims=1, down=True),
ResBlock(embedding_dim, out_channels=embedding_dim, use_conv=True, dims=1),
ResBlock(embedding_dim, out_channels=embedding_dim, use_conv=True, dims=1),
ResBlock(embedding_dim, out_channels=embedding_dim, use_conv=True, dims=1),
nn.GroupNorm(8, embedding_dim)
)
self.quantizer = Quantize(embedding_dim, num_tokens)
self.codes = torch.zeros((num_tokens*100,), dtype=torch.long)
self.code_ind = 0
self.total_codes = 0
self.internal_step = 0
def forward(self, x):
h = x
for lyr in self.encoder:
h = lyr(h)
h = h.permute(0,2,1)
h_quant, commitment_loss, codes = self.quantizer(h)
self.log_codes(codes)
return h_quant, commitment_loss
def log_codes(self, codes):
# This is so we can debug the distribution of codes being learned.
if self.internal_step % 10 == 0:
codes = codes.flatten()
l = codes.shape[0]
i = self.code_ind if (self.codes.shape[0] - self.code_ind) > l else self.codes.shape[0] - l
self.codes[i:i+l] = codes.cpu()
self.code_ind = self.code_ind + l
if self.code_ind >= self.codes.shape[0]:
self.code_ind = 0
self.total_codes += 1
self.internal_step += 1
class GptMusicLower(nn.Module):
def __init__(self, dim, layers, dropout=0, num_target_vectors=8192, num_upper_vectors=32768,
fp16=True, freeze_upper_until=0, num_vaes=4, vqargs={}):
super().__init__()
self.num_vaes = num_vaes
self.freeze_upper_until = freeze_upper_until
self.num_groups = num_target_groups
self.config = GPT2Config(vocab_size=1, n_positions=8192, n_embd=dim, n_layer=layers, n_head=dim//64,
n_inner=dim*2, attn_pdrop=dropout, resid_pdrop=dropout, gradient_checkpointing=True, use_cache=False)
self.target_quantizer = MusicQuantizer2(inp_channels=256, inner_dim=[1024], codevector_dim=1024, codebook_size=256,
codebook_groups=2, max_gumbel_temperature=4, min_gumbel_temperature=.5)
self.upper_quantizer = MusicQuantizer2(inp_channels=256, inner_dim=[dim,
max(512,dim-128),
max(512,dim-256),
max(512,dim-384),
max(512,dim-512),
max(512,dim-512)], codevector_dim=dim,
codebook_size=num_upper_vectors, codebook_groups=num_upper_groups, expressive_downsamples=True)
self.target_quantizers = nn.ModuleList([DiscreteVAE(**vqargs).eval() for _ in range(num_vaes)])
self.upper_quantizer = UpperQuantizer(256, dim, num_upper_vectors)
self.fp16 = fp16
# Following are unused quantizer constructs we delete to avoid DDP errors (and to be efficient.. of course..)
del self.target_quantizer.decoder
del self.target_quantizer.up
del self.upper_quantizer.up
self.internal_step = 0
# Freeze the target quantizer.
for p in self.target_quantizer.parameters():
for p in self.target_quantizers.parameters():
p.DO_NOT_TRAIN = True
p.requires_grad = False
self.upper_mixer = Encoder(
dim=dim,
depth=4,
heads=dim//64,
ff_dropout=dropout,
attn_dropout=dropout,
use_rmsnorm=True,
ff_glu=True,
rotary_emb_dim=True,
)
self.conditioning_encoder = ConditioningEncoder(256, dim, attn_blocks=4, num_attn_heads=dim//64)
self.gpt = GPT2Model(self.config)
del self.gpt.wte # Unused, we'll do our own embeddings.
self.embeddings = nn.ModuleList([nn.Embedding(num_target_vectors, dim // num_target_groups) for _ in range(num_target_groups)])
self.heads = nn.ModuleList([nn.Linear(dim, num_target_vectors) for _ in range(num_target_groups)])
self.embeddings = nn.ModuleList([nn.Embedding(num_target_vectors, dim // num_vaes) for _ in range(num_vaes)])
self.heads = nn.ModuleList([nn.Linear(dim, num_target_vectors) for _ in range(num_vaes)])
def forward(self, mel, conditioning, return_latent=False):
unused_params = []
with torch.no_grad():
self.target_quantizer.eval()
codes = self.target_quantizer.get_codes(mel)
codes = []
partition_size = mel.shape[1] // len(self.target_quantizers)
for i, q in enumerate(self.target_quantizers):
mel_partition = mel[:, i*partition_size:(i+1)*partition_size]
codes.append(q.get_codebook_indices(mel_partition))
codes = torch.stack(codes, dim=-1)
if self.freeze_upper_until > self.internal_step:
with torch.no_grad():
upper_vector, upper_diversity = self.upper_quantizer(mel, return_decoder_latent=True)
self.upper_quantizer = self.upper_quantizer.eval()
upper_vector, upper_diversity = self.upper_quantizer(mel)
unused_params.extend(list(self.upper_quantizer.parameters()))
else:
self.upper_quantizer = self.upper_quantizer.train()
upper_vector, upper_diversity = self.upper_quantizer(mel, return_decoder_latent=True)
upper_vector = self.upper_mixer(upper_vector.permute(0,2,1)).permute(0,2,1) # Allow the upper vector to fully attend to itself (the whole thing is a prior.)
upper_vector = F.interpolate(upper_vector, size=codes.shape[1], mode='linear')
upper_vector = F.interpolate(upper_vector.permute(0,2,1), size=codes.shape[1], mode='linear')
upper_vector = upper_vector.permute(0,2,1)
inputs = codes[:, :-1]
@ -148,33 +190,24 @@ class GptMusicLower(nn.Module):
unused_adder = unused_adder + p.mean() * 0
losses = losses + unused_adder
return losses / self.num_groups, upper_diversity
return losses / self.num_vaes, upper_diversity
def get_grad_norm_parameter_groups(self):
groups = {
'gpt': list(self.gpt.parameters()),
'conditioning': list(self.conditioning_encoder.parameters()),
'upper_mixer': list(self.upper_mixer.parameters()),
'upper_quant_down': list(self.upper_quantizer.down.parameters()),
'upper_quant_encoder': list(self.upper_quantizer.encoder.parameters()),
'upper_quant_codebook': [self.upper_quantizer.quantizer.codevectors],
'upper_quantizer': list(self.upper_quantizer.parameters()),
'target_vqs': list(self.target_quantizers.parameters()),
}
return groups
def get_debug_values(self, step, __):
self.internal_step = 0
if self.upper_quantizer.total_codes > 0:
return {'histogram_upper_codes': self.upper_quantizer.codes[:self.upper_quantizer.total_codes],
'gumbel_temperature': self.upper_quantizer.quantizer.temperature}
return {'histogram_upper_codes': self.upper_quantizer.codes[:self.upper_quantizer.total_codes]}
else:
return {}
def update_for_step(self, step, *args):
self.internal_step = step
self.upper_quantizer.quantizer.temperature = max(
self.upper_quantizer.max_gumbel_temperature * self.upper_quantizer.gumbel_temperature_decay**self.internal_step,
self.upper_quantizer.min_gumbel_temperature,
)
class GptMusicUpper(nn.Module):
def __init__(self, dim, layers, dropout=0, num_upper_vectors=64, num_upper_groups=4, fp16=True):
@ -263,18 +296,38 @@ def register_music_gpt_upper(opt_net, opt):
def test_lower():
from models.audio.music.transformer_diffusion8 import TransformerDiffusionWithQuantizer
base_diff = TransformerDiffusionWithQuantizer(in_channels=256, out_channels=512, model_channels=2048, block_channels=1024,
prenet_channels=1024, prenet_layers=6, num_layers=16, input_vec_dim=1024,
dropout=.1, unconditioned_percentage=0, freeze_quantizer_until=6000)
base_diff.load_state_dict(torch.load('x:/dlas/experiments/train_music_diffusion_tfd8/models/47500_generator.pth', map_location=torch.device('cpu')))
model = GptMusicLower(dim=512, layers=12, fp16=False, freeze_upper_until=1000,
num_target_vectors=8192, num_upper_vectors=8192, num_vaes=4,
vqargs= {
'positional_dims': 1, 'channels': 64,
'hidden_dim': 512, 'num_resnet_blocks': 3, 'codebook_dim': 512, 'num_tokens': 8192,
'num_layers': 0, 'record_codes': True, 'kernel_size': 3, 'use_transposed_convs': False,
})
quants = ['X:\\dlas\\experiments\\music_vqvaes\\train_lrdvae_music_low\\models\\7500_generator.pth',
'X:\\dlas\\experiments\\music_vqvaes\\train_lrdvae_music_mid_low\\models\\11000_generator.pth',
'X:\\dlas\\experiments\\music_vqvaes\\train_lrdvae_music_mid_high\\models\\11500_generator.pth',
'X:\\dlas\\experiments\\music_vqvaes\\train_lrdvae_music_high\\models\\11500_generator.pth']
for i, qfile in enumerate(quants):
quant_weights = torch.load(qfile)
model.target_quantizers[i].load_state_dict(quant_weights, strict=True)
torch.save(model.state_dict(), 'sample.pth')
print_network(model)
model = GptMusicLower(512, 8, fp16=False, freeze_upper_until=100)
model.target_quantizer.load_state_dict(base_diff.quantizer.state_dict(), strict=False)
torch.save(model.state_dict(), "sample.pth")
mel = torch.randn(2,256,400)
model(mel, mel)
model.get_grad_norm_parameter_groups()
pg = model.get_grad_norm_parameter_groups()
t = 0
for k, vs in pg.items():
s = 0
for v in vs:
m = 1
for d in v.shape:
m *= d
s += m
t += s
print(k, s/1000000)
print(t/1000000)
def test_upper():

View File

@ -0,0 +1,176 @@
import torch
import torch.nn.functional as F
from torch import nn
from transformers import GPT2Config, GPT2Model
from models.arch_util import AttentionBlock, ResBlock
from models.audio.tts.lucidrains_dvae import DiscreteVAE
from trainer.networks import register_model
from utils.util import opt_get, ceil_multiple, print_network
class UpperEncoder(nn.Module):
def __init__(self,
spec_dim,
hidden_dim,
embedding_dim,
):
super().__init__()
attn = []
def edim(m):
dd = max(hidden_dim // m, 128, spec_dim)
return ceil_multiple(dd, 8)
self.downsampler = nn.Sequential(
ResBlock(spec_dim, out_channels=edim(6), use_conv=True, dims=1, down=True),
ResBlock(edim(6), out_channels=edim(5), use_conv=True, dims=1, down=True),
ResBlock(edim(5), out_channels=edim(4), use_conv=True, dims=1, down=True),
ResBlock(edim(4), out_channels=edim(3), use_conv=True, dims=1, down=True),
ResBlock(edim(3), out_channels=edim(3), use_conv=True, dims=1),
ResBlock(edim(3), out_channels=edim(2), use_conv=True, dims=1, down=True),
ResBlock(edim(2), out_channels=edim(2), use_conv=True, dims=1),
ResBlock(edim(2), out_channels=hidden_dim, use_conv=True, dims=1, down=True))
self.encoder = nn.Sequential(
AttentionBlock(hidden_dim, 4, do_activation=True),
ResBlock(hidden_dim, out_channels=hidden_dim, use_conv=True, dims=1),
AttentionBlock(hidden_dim, 4, do_activation=True),
ResBlock(hidden_dim, out_channels=hidden_dim, use_conv=True, dims=1),
AttentionBlock(hidden_dim, 4, do_activation=True),
ResBlock(hidden_dim, out_channels=hidden_dim, use_conv=True, dims=1),
nn.GroupNorm(8, hidden_dim),
nn.SiLU(),
nn.Conv1d(hidden_dim, embedding_dim, 1)
)
def forward(self, x):
h = self.downsampler(x)
h = self.encoder(h)
return h
class GptMusicLower(nn.Module):
def __init__(self, dim, layers, encoder_out_dim, dropout=0, num_target_vectors=8192, fp16=True, num_vaes=4, vqargs={}):
super().__init__()
self.num_vaes = num_vaes
self.start_token = nn.Parameter(torch.randn(1, 1, dim))
self.config = GPT2Config(vocab_size=1, n_positions=8192, n_embd=dim, n_layer=layers, n_head=dim//64,
n_inner=dim*2, attn_pdrop=dropout, resid_pdrop=dropout, gradient_checkpointing=True,
use_cache=False)
self.target_quantizers = nn.ModuleList([DiscreteVAE(**vqargs).eval() for _ in range(num_vaes)])
self.upper_encoder = UpperEncoder(256, dim, encoder_out_dim)
self.encoder_projector = nn.Conv1d(encoder_out_dim, dim, 1)
self.fp16 = fp16
# Freeze the target quantizer.
for p in self.target_quantizers.parameters():
p.DO_NOT_TRAIN = True
p.requires_grad = False
# And delete the decoder, which is unused.
for tq in self.target_quantizers:
del tq.decoder
self.gpt = GPT2Model(self.config)
del self.gpt.wte # Unused, we'll do our own embeddings.
self.embeddings = nn.ModuleList([nn.Embedding(num_target_vectors, dim // num_vaes) for _ in range(num_vaes)])
self.heads = nn.ModuleList([nn.Linear(dim, num_target_vectors) for _ in range(num_vaes)])
def forward(self, mel, return_latent=False):
unused_params = []
with torch.no_grad():
codes = []
partition_size = mel.shape[1] // len(self.target_quantizers)
for i, q in enumerate(self.target_quantizers):
mel_partition = mel[:, i*partition_size:(i+1)*partition_size]
codes.append(q.get_codebook_indices(mel_partition))
codes = torch.stack(codes, dim=-1)
upper_vector = self.upper_encoder(mel)
upper_vector = self.encoder_projector(upper_vector)
# WTB slerp
upper_vector = F.interpolate(upper_vector, size=codes.shape[1], mode='linear')
upper_vector = upper_vector.permute(0,2,1)
inputs = codes[:, :-1]
targets = codes
upper_vector = upper_vector[:, :-1]
h = [embedding(inputs[:, :, i]) for i, embedding in enumerate(self.embeddings)]
h = torch.cat(h, dim=-1) + upper_vector
with torch.autocast(mel.device.type, enabled=self.fp16):
# Stick the conditioning embedding on the front of the input sequence.
# The transformer will learn how to integrate it.
# This statement also serves to pre-pad the inputs by one token, which is the basis of the next-token-prediction task. IOW: this is the "START" token.
h = torch.cat([self.start_token.repeat(h.shape[0], 1, 1), h], dim=1)
h = self.gpt(inputs_embeds=h, return_dict=True).last_hidden_state
if return_latent:
return h.float()
losses = 0
for i, head in enumerate(self.heads):
logits = head(h).permute(0,2,1)
loss = F.cross_entropy(logits, targets[:,:,i])
losses = losses + loss
unused_adder = 0
for p in unused_params:
unused_adder = unused_adder + p.mean() * 0
losses = losses + unused_adder
return losses / self.num_vaes
def get_grad_norm_parameter_groups(self):
groups = {
'gpt': list(self.gpt.parameters()),
'heads': list(self.heads.parameters()),
'embeddings': list(self.embeddings.parameters()),
'upper_latent_encoder': list(self.upper_encoder.encoder.parameters()),
'upper_latent_downsampler': list(self.upper_encoder.downsampler.parameters()),
}
return groups
@register_model
def register_music_gpt_lower2(opt_net, opt):
return GptMusicLower(**opt_get(opt_net, ['kwargs'], {}))
def test_lower():
model = GptMusicLower(dim=1024, encoder_out_dim=256, layers=16, fp16=False, num_target_vectors=8192, num_vaes=4,
vqargs= {'positional_dims': 1, 'channels': 64,
'hidden_dim': 512, 'num_resnet_blocks': 3, 'codebook_dim': 512, 'num_tokens': 8192,
'num_layers': 0, 'record_codes': True, 'kernel_size': 3, 'use_transposed_convs': False,
})
quants = ['X:\\dlas\\experiments\\music_vqvaes\\train_lrdvae_music_low\\models\\7500_generator.pth',
'X:\\dlas\\experiments\\music_vqvaes\\train_lrdvae_music_mid_low\\models\\11000_generator.pth',
'X:\\dlas\\experiments\\music_vqvaes\\train_lrdvae_music_mid_high\\models\\11500_generator.pth',
'X:\\dlas\\experiments\\music_vqvaes\\train_lrdvae_music_high\\models\\11500_generator.pth']
for i, qfile in enumerate(quants):
quant_weights = torch.load(qfile)
model.target_quantizers[i].load_state_dict(quant_weights, strict=False)
torch.save(model.state_dict(), 'sample.pth')
print_network(model)
mel = torch.randn(2,256,400)
model(mel)
pg = model.get_grad_norm_parameter_groups()
t = 0
for k, vs in pg.items():
s = 0
for v in vs:
m = 1
for d in v.shape:
m *= d
s += m
t += s
print(k, s/1000000)
print(t/1000000)
if __name__ == '__main__':
test_lower()

View File

@ -339,7 +339,7 @@ class Trainer:
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_gpt_tts_unified_alignment.yml')
parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_music_gpt.yml')
parser.add_argument('--launcher', choices=['none', 'pytorch'], default='none', help='job launcher')
args = parser.parse_args()
opt = option.parse(args.opt, is_train=True)