Support configurable multi-modal training

This commit is contained in:
James Betker 2020-10-24 11:57:39 -06:00
parent ee6216966c
commit 327cdbe110
3 changed files with 82 additions and 103 deletions

View File

@ -9,8 +9,13 @@
# models are shared. Your best bet is to have all models save state at the same time so that they all load ~ the same # models are shared. Your best bet is to have all models save state at the same time so that they all load ~ the same
# state when re-started. # state when re-started.
import argparse import argparse
import yaml
import train import train
import utils.options as option import utils.options as option
from utils.util import OrderedYaml
def main(master_opt, launcher): def main(master_opt, launcher):
trainers = [] trainers = []
@ -40,7 +45,11 @@ if __name__ == '__main__':
#parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_exd_imgset_chained_structured_trans_invariance.yml') #parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_exd_imgset_chained_structured_trans_invariance.yml')
parser.add_argument('--launcher', choices=['none', 'pytorch'], default='none', help='job launcher') parser.add_argument('--launcher', choices=['none', 'pytorch'], default='none', help='job launcher')
args = parser.parse_args() args = parser.parse_args()
opt = {
'trainer_options': ['../options/teco.yml', '../options/exd.yml'] Loader, Dumper = OrderedYaml()
} with open(args.opt, mode='r') as f:
main(opt, args.launcher) opt = yaml.load(f, Loader=Loader)
opt = {
'trainer_options': ['../options/teco.yml', '../options/exd.yml']
}
main(opt, args.launcher)

View File

@ -155,6 +155,13 @@ if __name__ == "__main__":
if recurrent_mode and first_frame: if recurrent_mode and first_frame:
b, c, h, w = data['LQ'].shape b, c, h, w = data['LQ'].shape
recurrent_entry = torch.zeros((b,c,h*scale,w*scale), device=data['LQ'].device) recurrent_entry = torch.zeros((b,c,h*scale,w*scale), device=data['LQ'].device)
# Optionally swap out the 'generator' for the first frame to create a better image that the recurrent generator works off of.
if 'recurrent_hr_generator' in opt.keys():
recurrent_gen = model.env['generators']['generator']
model.env['generators']['generator'] = model.env['generators'][opt['recurrent_hr_generator']]
else:
model.env['generators']['generator'] = recurrent_gen
first_frame = False first_frame = False
if recurrent_mode: if recurrent_mode:
data['recurrent'] = recurrent_entry data['recurrent'] = recurrent_entry

View File

@ -11,7 +11,6 @@ import torch
def main(): def main():
mode = 'single' # single (one input folder) | pair (extract corresponding GT and LR pairs)
split_img = False split_img = False
opt = {} opt = {}
opt['n_thread'] = 2 opt['n_thread'] = 2
@ -19,75 +18,27 @@ def main():
# CV_IMWRITE_PNG_COMPRESSION from 0 to 9. A higher value means a smaller size and longer # CV_IMWRITE_PNG_COMPRESSION from 0 to 9. A higher value means a smaller size and longer
# compression time. If read raw images during training, use 0 for faster IO speed. # compression time. If read raw images during training, use 0 for faster IO speed.
if mode == 'single': opt['dest'] = 'file'
opt['dest'] = 'file' opt['input_folder'] = 'F:\\4k6k\\datasets\\ns_images\\vr\\images_sized'
opt['input_folder'] = 'F:\\4k6k\\datasets\\images\\fullvideo\\full_images' opt['save_folder'] = 'F:\\4k6k\\datasets\\ns_images\\vr\\paired_images'
opt['save_folder'] = 'F:\\4k6k\\datasets\\images\\fullvideo\\256_tiled' opt['crop_sz'] = [512, 1024] # the size of each sub-image
opt['crop_sz'] = [512, 1024] # the size of each sub-image opt['step'] = [512, 1024] # step of the sliding crop window
opt['step'] = [512, 1024] # step of the sliding crop window opt['thres_sz'] = 128 # size threshold
opt['thres_sz'] = 128 # size threshold opt['resize_final_img'] = [.5, .25]
opt['resize_final_img'] = [.5, .25] opt['only_resize'] = False
opt['only_resize'] = False opt['vertical_split'] = True
save_folder = opt['save_folder'] save_folder = opt['save_folder']
if not osp.exists(save_folder): if not osp.exists(save_folder):
os.makedirs(save_folder) os.makedirs(save_folder)
print('mkdir [{:s}] ...'.format(save_folder)) print('mkdir [{:s}] ...'.format(save_folder))
if opt['dest'] == 'lmdb': if opt['dest'] == 'lmdb':
writer = LmdbWriter(save_folder) writer = LmdbWriter(save_folder)
else:
writer = FileWriter(save_folder)
extract_single(opt, writer, split_img)
elif mode == 'pair':
GT_folder = '../../datasets/div2k/DIV2K_train_HR'
LR_folder = '../../datasets/div2k/DIV2K_train_LR_bicubic/X4'
save_GT_folder = '../../datasets/div2k/DIV2K800_sub'
save_LR_folder = '../../datasets/div2k/DIV2K800_sub_bicLRx4'
scale_ratio = 4
crop_sz = 480 # the size of each sub-image (GT)
step = 240 # step of the sliding crop window (GT)
thres_sz = 48 # size threshold
########################################################################
# check that all the GT and LR images have correct scale ratio
img_GT_list = data_util._get_paths_from_images(GT_folder)
img_LR_list = data_util._get_paths_from_images(LR_folder)
assert len(img_GT_list) == len(img_LR_list), 'different length of GT_folder and LR_folder.'
for path_GT, path_LR in zip(img_GT_list, img_LR_list):
img_GT = Image.open(path_GT)
img_LR = Image.open(path_LR)
w_GT, h_GT = img_GT.size
w_LR, h_LR = img_LR.size
assert w_GT / w_LR == scale_ratio, 'GT width [{:d}] is not {:d}X as LR weight [{:d}] for {:s}.'.format( # noqa: E501
w_GT, scale_ratio, w_LR, path_GT)
assert w_GT / w_LR == scale_ratio, 'GT width [{:d}] is not {:d}X as LR weight [{:d}] for {:s}.'.format( # noqa: E501
w_GT, scale_ratio, w_LR, path_GT)
# check crop size, step and threshold size
assert crop_sz % scale_ratio == 0, 'crop size is not {:d}X multiplication.'.format(
scale_ratio)
assert step % scale_ratio == 0, 'step is not {:d}X multiplication.'.format(scale_ratio)
assert thres_sz % scale_ratio == 0, 'thres_sz is not {:d}X multiplication.'.format(
scale_ratio)
print('process GT...')
opt['input_folder'] = GT_folder
opt['save_folder'] = save_GT_folder
opt['crop_sz'] = crop_sz
opt['step'] = step
opt['thres_sz'] = thres_sz
extract_single(opt)
print('process LR...')
opt['input_folder'] = LR_folder
opt['save_folder'] = save_LR_folder
opt['crop_sz'] = crop_sz // scale_ratio
opt['step'] = step // scale_ratio
opt['thres_sz'] = thres_sz // scale_ratio
extract_single(opt)
assert len(data_util._get_paths_from_images(save_GT_folder)) == len(
data_util._get_paths_from_images(
save_LR_folder)), 'different length of save_GT_folder and save_LR_folder.'
else: else:
raise ValueError('Wrong mode.') writer = FileWriter(save_folder)
extract_single(opt, writer)
class LmdbWriter: class LmdbWriter:
@ -182,26 +133,22 @@ class FileWriter:
self.flush() self.flush()
class TiledDataset(data.Dataset): class TiledDataset(data.Dataset):
def __init__(self, opt, split_mode=False): def __init__(self, opt):
self.split_mode = split_mode self.split_mode = opt['vertical_split']
self.opt = opt self.opt = opt
input_folder = opt['input_folder'] input_folder = opt['input_folder']
self.images = data_util._get_paths_from_images(input_folder) self.images = data_util._get_paths_from_images(input_folder)
def __getitem__(self, index): def __getitem__(self, index):
if self.split_mode: if self.split_mode:
return self.get(index, True, True).extend(self.get(index, True, False)) return (self.get(index, True, True), self.get(index, True, False))
else: else:
return self.get(index, False, False) # Wrap in a tuple to align with split mode.
return (self.get(index, False, False), None)
def get_for_scale(self, img, split_mode, left_image, crop_sz, step, resize_factor, ref_resize_factor):
assert not left_image # Split image not yet supported, False is the default value.
def get_for_scale(self, img, crop_sz, step, resize_factor, ref_resize_factor):
thres_sz = self.opt['thres_sz'] thres_sz = self.opt['thres_sz']
h, w, c = img.shape h, w, c = img.shape
if split_mode:
w = w/2
h_space = np.arange(0, h - crop_sz + 1, step) h_space = np.arange(0, h - crop_sz + 1, step)
if h - (h_space[-1] + crop_sz) > thres_sz: if h - (h_space[-1] + crop_sz) > thres_sz:
@ -231,30 +178,41 @@ class TiledDataset(data.Dataset):
def get(self, index, split_mode, left_img): def get(self, index, split_mode, left_img):
path = self.images[index] path = self.images[index]
img = cv2.imread(path, cv2.IMREAD_UNCHANGED) img = cv2.imread(path, cv2.IMREAD_UNCHANGED)
# We must convert the image into a square. Crop the image so that only the center is left, since this is often
# the most salient part of the image.
if len(img.shape) == 2: # Greyscale not supported.
return None
h, w, c = img.shape h, w, c = img.shape
dim = min(h, w)
img = img[(h - dim) // 2:dim + (h - dim) // 2, (w - dim) // 2:dim + (w - dim) // 2, :]
h, w, c = img.shape
# Uncomment to filter any image that doesnt meet a threshold size. # Uncomment to filter any image that doesnt meet a threshold size.
if min(h,w) < 1024: if min(h,w) < 1024:
return None return None
# Greyscale not supported.
if len(img.shape) == 2:
return None
# Handle splitting the image if needed.
left = 0 left = 0
right = w right = w
if split_mode: if split_mode:
if left_img: if left_img:
left = 0 left = 0
right = int(w/2) right = w//2
else: else:
left = int(w/2) left = w//2
right = w right = w
img = img[:, left:right] img = img[:, left:right]
# We must convert the image into a square.
dim = min(h, w)
if split_mode:
# Crop the image towards the center, which makes more sense in split mode.
if left_img:
img = img[-dim:, -dim:, :]
else:
img = img[:dim, :dim, :]
else:
# Crop the image so that only the center is left, since this is often the most salient part of the image.
img = img[(h - dim) // 2:dim + (h - dim) // 2, (w - dim) // 2:dim + (w - dim) // 2, :]
h, w, c = img.shape
tile_dim = int(self.opt['crop_sz'][0] * self.opt['resize_final_img'][0]) tile_dim = int(self.opt['crop_sz'][0] * self.opt['resize_final_img'][0])
dsize = (tile_dim, tile_dim) dsize = (tile_dim, tile_dim)
ref_resize_factor = h / tile_dim ref_resize_factor = h / tile_dim
@ -266,7 +224,7 @@ class TiledDataset(data.Dataset):
results = [(ref_buffer, (-1,-1), (-1,-1))] results = [(ref_buffer, (-1,-1), (-1,-1))]
for crop_sz, resize_factor, step in zip(self.opt['crop_sz'], self.opt['resize_final_img'], self.opt['step']): for crop_sz, resize_factor, step in zip(self.opt['crop_sz'], self.opt['resize_final_img'], self.opt['step']):
results.extend(self.get_for_scale(img, split_mode, left_img, crop_sz, step, resize_factor, ref_resize_factor)) results.extend(self.get_for_scale(img, crop_sz, step, resize_factor, ref_resize_factor))
return results, path return results, path
def __len__(self): def __len__(self):
@ -276,20 +234,25 @@ class TiledDataset(data.Dataset):
def identity(x): def identity(x):
return x return x
def extract_single(opt, writer, split_img=False): def extract_single(opt, writer):
dataset = TiledDataset(opt, split_img) dataset = TiledDataset(opt)
dataloader = data.DataLoader(dataset, num_workers=opt['n_thread'], collate_fn=identity) dataloader = data.DataLoader(dataset, num_workers=opt['n_thread'], collate_fn=identity)
tq = tqdm(dataloader) tq = tqdm(dataloader)
for imgs in tq: for spl_imgs in tq:
if imgs is None or imgs[0] is None: if spl_imgs is None:
continue continue
imgs, path = imgs[0] spl_imgs = spl_imgs[0]
if imgs is None or len(imgs) <= 1: for imgs, lbl in zip(list(spl_imgs), ['left', 'right']):
continue if imgs is None:
ref_id = writer.write_reference_image(imgs[0], path) continue
for tile in imgs[1:]: imgs, path = imgs
writer.write_tile_image(ref_id, tile) if imgs is None or len(imgs) <= 1:
writer.flush() continue
path = path + "_" + lbl
ref_id = writer.write_reference_image(imgs[0], path)
for tile in imgs[1:]:
writer.write_tile_image(ref_id, tile)
writer.flush()
writer.close() writer.close()