Add norming to discretization_loss
This commit is contained in:
parent
bb891a3a53
commit
33120cb35c
|
@ -10,21 +10,46 @@ import torch.nn.functional as F
|
|||
# In other words, attempts to force the discretization function to have a mean equal utilization across all discrete
|
||||
# values with the specified expected variance.
|
||||
class DiscretizationLoss(nn.Module):
|
||||
def __init__(self, dim, expected_variance):
|
||||
def __init__(self, discrete_bins, dim, expected_variance, store_past=0):
|
||||
super().__init__()
|
||||
self.discrete_bins = discrete_bins
|
||||
self.dim = dim
|
||||
self.dist = torch.distributions.Normal(0, scale=expected_variance)
|
||||
if store_past > 0:
|
||||
self.record_past = True
|
||||
self.register_buffer("accumulator_index", torch.zeros(1, dtype=torch.long, device='cpu'))
|
||||
self.register_buffer("accumulator_filled", torch.zeros(1, dtype=torch.long, device='cpu'))
|
||||
self.register_buffer("accumulator", torch.zeros(store_past, discrete_bins))
|
||||
else:
|
||||
self.record_past = False
|
||||
|
||||
def forward(self, x):
|
||||
other_dims = set(range(len(x.shape)))-set([self.dim])
|
||||
averaged = x.sum(dim=tuple(other_dims)) / x.sum()
|
||||
averaged = averaged - averaged.mean()
|
||||
|
||||
if self.record_past:
|
||||
acc_count = self.accumulator.shape[0]
|
||||
avg = averaged.detach().clone()
|
||||
if self.accumulator_filled > 0:
|
||||
averaged = torch.mean(self.accumulator, dim=0) * (acc_count-1) / acc_count + \
|
||||
averaged / acc_count
|
||||
|
||||
# Also push averaged into the accumulator.
|
||||
self.accumulator[self.accumulator_index] = avg
|
||||
self.accumulator_index += 1
|
||||
if self.accumulator_index >= acc_count:
|
||||
self.accumulator_index *= 0
|
||||
if self.accumulator_filled <= 0:
|
||||
self.accumulator_filled += 1
|
||||
|
||||
return torch.sum(-self.dist.log_prob(averaged))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
d = DiscretizationLoss(1, 1e-6)
|
||||
v = torch.randn(16, 8192, 500)
|
||||
d = DiscretizationLoss(1024, 1, 1e-6, store_past=20)
|
||||
for _ in range(500):
|
||||
v = torch.randn(16, 1024, 500)
|
||||
#for k in range(5):
|
||||
# v[:, random.randint(0,8192), :] += random.random()*100
|
||||
v = F.softmax(v, 1)
|
||||
|
|
|
@ -75,6 +75,7 @@ class DiscreteVAE(nn.Module):
|
|||
straight_through = False,
|
||||
normalization = None, # ((0.5,) * 3, (0.5,) * 3),
|
||||
record_codes = False,
|
||||
discretization_loss_averaging_steps = 100,
|
||||
):
|
||||
super().__init__()
|
||||
assert num_layers >= 1, 'number of layers must be greater than or equal to 1'
|
||||
|
@ -85,7 +86,7 @@ class DiscreteVAE(nn.Module):
|
|||
self.straight_through = straight_through
|
||||
self.codebook = Quantize(codebook_dim, num_tokens)
|
||||
self.positional_dims = positional_dims
|
||||
self.discrete_loss = DiscretizationLoss(2, 1 / (num_tokens*2))
|
||||
self.discrete_loss = DiscretizationLoss(num_tokens, 2, 1 / (num_tokens*2), discretization_loss_averaging_steps)
|
||||
|
||||
assert positional_dims > 0 and positional_dims < 3 # This VAE only supports 1d and 2d inputs for now.
|
||||
if positional_dims == 2:
|
||||
|
@ -224,7 +225,6 @@ class DiscreteVAE(nn.Module):
|
|||
# discretization loss
|
||||
disc_loss = self.discrete_loss(soft_codes)
|
||||
|
||||
|
||||
# This is so we can debug the distribution of codes being learned.
|
||||
if self.record_codes and self.internal_step % 50 == 0:
|
||||
codes = codes.flatten()
|
||||
|
|
|
@ -106,7 +106,7 @@ class Quantize(nn.Module):
|
|||
quantize = input + (quantize - input).detach()
|
||||
|
||||
if return_soft_codes:
|
||||
return quantize, diff, embed_ind, soft_codes.view(input.shape)
|
||||
return quantize, diff, embed_ind, soft_codes.view(input.shape[:-1] + (-1,))
|
||||
else:
|
||||
return quantize, diff, embed_ind
|
||||
|
||||
|
|
|
@ -284,7 +284,7 @@ class Trainer:
|
|||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_dvae_clips.yml')
|
||||
parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_dvae_clips_with_discretization_loss.yml')
|
||||
parser.add_argument('--launcher', choices=['none', 'pytorch'], default='none', help='job launcher')
|
||||
parser.add_argument('--local_rank', type=int, default=0)
|
||||
args = parser.parse_args()
|
||||
|
|
Loading…
Reference in New Issue
Block a user