Add Resnet Discriminator with BN

This commit is contained in:
James Betker 2020-04-29 20:51:57 -06:00
parent a5188bb7ca
commit 3781ea725c
5 changed files with 174 additions and 25 deletions

View File

@ -21,7 +21,7 @@ def create_dataloader(dataset, dataset_opt, opt=None, sampler=None):
num_workers=num_workers, sampler=sampler, drop_last=True,
pin_memory=False)
else:
return torch.utils.data.DataLoader(dataset, batch_size=12, shuffle=False, num_workers=3,
return torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=False, num_workers=0,
pin_memory=False)

View File

@ -0,0 +1,150 @@
import torch
import torch.nn as nn
import numpy as np
__all__ = ['ResNet', 'resnet20', 'resnet32', 'resnet44', 'resnet56', 'resnet110', 'resnet1202']
def conv3x3(in_planes, out_planes, stride=1):
"""3x3 convolution with padding"""
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=False)
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(BasicBlock, self).__init__()
# Both self.conv1 and self.downsample layers downsample the input when stride != 1
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = nn.BatchNorm2d(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = nn.BatchNorm2d(planes)
self.downsample = downsample
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
identity = self.downsample(x)
identity = torch.cat((identity, torch.zeros_like(identity)), 1)
out += identity
out = self.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, block, layers, num_filters=16, num_classes=10):
super(ResNet, self).__init__()
self.num_layers = sum(layers)
self.inplanes = num_filters
self.conv1 = conv3x3(3, num_filters)
self.bn1 = nn.BatchNorm2d(num_filters)
self.relu = nn.ReLU(inplace=True)
self.layer1 = self._make_layer(block, num_filters, layers[0])
self.layer2 = self._make_layer(block, num_filters * 2, layers[1], stride=2)
self.layer3 = self._make_layer(block, num_filters * 4, layers[2], stride=2)
self.layer4 = self._make_layer(block, num_filters * 8, layers[2], stride=2)
self.fc1 = nn.Linear(num_filters * 8 * 8 * 8, 64, bias=True)
self.fc2 = nn.Linear(64, num_classes)
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
# Zero-initialize the last BN in each residual branch,
# so that the residual branch starts with zeros, and each residual block behaves like an identity.
# This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
for m in self.modules():
if isinstance(m, BasicBlock):
nn.init.constant_(m.bn2.weight, 0)
def _make_layer(self, block, planes, blocks, stride=1):
downsample = None
if stride != 1:
downsample = nn.Sequential(
nn.AvgPool2d(1, stride=stride),
nn.BatchNorm2d(self.inplanes),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample))
self.inplanes = planes
for _ in range(1, blocks):
layers.append(block(planes, planes))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = x.view(x.size(0), -1)
x = self.relu(self.fc1(x))
x = self.fc2(x)
return x
def resnet20(**kwargs):
"""Constructs a ResNet-20 model.
"""
model = ResNet(BasicBlock, [3, 3, 3], **kwargs)
return model
def resnet32(**kwargs):
"""Constructs a ResNet-32 model.
"""
model = ResNet(BasicBlock, [5, 5, 5], **kwargs)
return model
def resnet44(**kwargs):
"""Constructs a ResNet-44 model.
"""
model = ResNet(BasicBlock, [7, 7, 7], **kwargs)
return model
def resnet56(**kwargs):
"""Constructs a ResNet-56 model.
"""
model = ResNet(BasicBlock, [9, 9, 9], **kwargs)
return model
def resnet110(**kwargs):
"""Constructs a ResNet-110 model.
"""
model = ResNet(BasicBlock, [18, 18, 18], **kwargs)
return model
def resnet1202(**kwargs):
"""Constructs a ResNet-1202 model.
"""
model = ResNet(BasicBlock, [200, 200, 200], **kwargs)
return model

View File

@ -101,15 +101,15 @@ class FixupResNet(nn.Module):
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
bias=False)
self.bias1 = nn.Parameter(torch.zeros(1))
self.relu = nn.ReLU(inplace=True)
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.bias2 = nn.Parameter(torch.zeros(1))
self.fc = nn.Linear(512 * block.expansion, num_classes)
self.fc1 = nn.Linear(512 * 2 * 2, 100)
self.fc2 = nn.Linear(100, num_classes)
for m in self.modules():
if isinstance(m, FixupBasicBlock):
@ -142,7 +142,7 @@ class FixupResNet(nn.Module):
def forward(self, x):
x = self.conv1(x)
x = self.relu(x + self.bias1)
x = self.lrelu(x + self.bias1)
x = self.maxpool(x)
x = self.layer1(x)
@ -150,9 +150,9 @@ class FixupResNet(nn.Module):
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.fc(x + self.bias2)
x = self.lrelu(self.fc1(x))
x = self.fc2(x + self.bias2)
return x

View File

@ -2,10 +2,12 @@ import torch
import models.archs.SRResNet_arch as SRResNet_arch
import models.archs.discriminator_vgg_arch as SRGAN_arch
import models.archs.DiscriminatorResnet_arch as DiscriminatorResnet_arch
import models.archs.DiscriminatorResnetBN_arch as DiscriminatorResnetBN_arch
import models.archs.RRDBNet_arch as RRDBNet_arch
import models.archs.EDVR_arch as EDVR_arch
import models.archs.HighToLowResNet as HighToLowResNet
import models.archs.FlatProcessorNet_arch as FlatProcessorNet_arch
import models.archs.arch_util as arch_utils
import math
# Generator
@ -54,8 +56,7 @@ def define_D(opt):
if which_model == 'discriminator_vgg_128':
netD = SRGAN_arch.Discriminator_VGG_128(in_nc=opt_net['in_nc'], nf=opt_net['nf'], input_img_factor=img_sz / 128)
elif which_model == 'discriminator_resnet':
netD = DiscriminatorResnet_arch.DiscriminatorResnet(in_nc=opt_net['in_nc'], nf=opt_net['nf'], input_img_size=img_sz,
trunk_resblocks=opt_net['trunk_resblocks'], skip_resblocks=opt_net['skip_resblocks'])
netD = DiscriminatorResnetBN_arch.resnet32(num_filters=opt_net['nf'], num_classes=1)
else:
raise NotImplementedError('Discriminator model [{:s}] not recognized'.format(which_model))
return netD

View File

@ -16,8 +16,8 @@ datasets:
dataroot_LQ: E:\\4k6k\\datasets\\ultra_lowq\\for_training
mismatched_Data_OK: true
use_shuffle: true
n_workers: 8 # per GPU
batch_size: 32
n_workers: 0 # per GPU
batch_size: 16
target_size: 64
use_flip: false
use_rot: false
@ -34,31 +34,29 @@ network_G:
which_model_G: FlatProcessorNet
in_nc: 3
out_nc: 3
nf: 32
ra_blocks: 3
assembler_blocks: 2
nf: 48
ra_blocks: 4
assembler_blocks: 3
network_D:
which_model_D: discriminator_resnet
in_nc: 3
nf: 32
trunk_resblocks: 3
skip_resblocks: 2
nf: 64
#### path
path:
pretrain_model_G: ~
pretrain_model_D: ~
pretrain_model_D: ~ #../experiments/resnet_corrupt_discriminator_fixup.pth
resume_state: ~
strict_load: true
#### training settings: learning rate scheme, loss
train:
lr_G: !!float 1e-5
lr_G: !!float 1e-4
weight_decay_G: 0
beta1_G: 0.9
beta2_G: 0.99
lr_D: !!float 1e-5
lr_D: !!float 1e-4
weight_decay_D: 0
beta1_D: 0.9
beta2_D: 0.99
@ -66,18 +64,18 @@ train:
niter: 400000
warmup_iter: -1 # no warm up
lr_steps: [4000, 8000, 12000, 15000, 20000]
lr_steps: [12000, 24000, 36000, 48000, 64000]
lr_gamma: 0.5
pixel_criterion: l1
pixel_criterion: l2
pixel_weight: !!float 1e-2
feature_criterion: l1
feature_weight: 0
gan_type: gan # gan | ragan
gan_type: ragan # gan | ragan
gan_weight: !!float 1e-1
D_update_ratio: 1
D_init_iters: 1500
D_update_ratio: 2
D_init_iters: 1200
manual_seed: 10
val_freq: !!float 5e2