diff --git a/codes/data_scripts/extract_subimages.py b/codes/data_scripts/extract_subimages.py index df8d3ef7..0cd225e9 100644 --- a/codes/data_scripts/extract_subimages.py +++ b/codes/data_scripts/extract_subimages.py @@ -16,15 +16,17 @@ def main(): split_img = False opt = {} opt['n_thread'] = 20 - opt['compression_level'] = 3 # 3 is the default value in cv2 + opt['compression_level'] = 90 # CV_IMWRITE_PNG_COMPRESSION from 0 to 9. A higher value means a smaller size and longer # compression time. If read raw images during training, use 0 for faster IO speed. if mode == 'single': - opt['input_folder'] = 'F:\\4k6k\\datasets\\ns_images\\imagesets\\images' - opt['save_folder'] = 'F:\\4k6k\\datasets\\ns_images\\imagesets\\square_context' - opt['crop_sz'] = 4096 # the size of each sub-image - opt['step'] = 4096 # step of the sliding crop window - opt['thres_sz'] = 256 # size threshold + full_multiplier = .25 + opt['input_folder'] = 'F:\\4k6k\\datasets\\images\\goodeats\\hq\\new_season\\lr_hr_enc\\lr\\images' + opt['save_folder'] = 'F:\\4k6k\\datasets\\images\\goodeats\\hq\\new_season\\lr_hr_enc\\lr\\images_tiled' + opt['crop_sz'] = int(256 * full_multiplier) # the size of each sub-image + opt['step'] = int(128 * full_multiplier) # step of the sliding crop window + opt['thres_sz'] = int(64 * full_multiplier) # size threshold + opt['image_minimum_size_threshold'] = int(1024 * full_multiplier) # Minimum size of input image in height dim. Images under this size will not be processed. opt['resize_final_img'] = .5 opt['only_resize'] = False extract_single(opt, split_img) @@ -90,15 +92,19 @@ def extract_single(opt, split_img=False): pbar = ProgressBar(len(img_list)) - pool = Pool(opt['n_thread']) + pool = Pool(opt['n_thread']) if opt['n_thread'] >= 1 else None for path in img_list: # If this fails, change it and the imwrite below to the write extension. assert ".jpg" in path - if split_img: - pool.apply_async(worker, args=(path, opt, True, False), callback=update) - pool.apply_async(worker, args=(path, opt, True, True), callback=update) + if pool: + if split_img: + pool.apply_async(worker, args=(path, opt, True, False), callback=update) + pool.apply_async(worker, args=(path, opt, True, True), callback=update) + else: + pool.apply_async(worker, args=(path, opt), callback=update) else: - pool.apply_async(worker, args=(path, opt), callback=update) + assert not split_img + worker(path, opt) pool.close() pool.join() print('All subprocesses done.') @@ -121,7 +127,7 @@ def worker(path, opt, split_mode=False, left_img=True): raise ValueError('Wrong image shape - {}'.format(n_channels)) # Uncomment to filter any image that doesnt meet a threshold size. - if min(h,w) < 1024: + if min(h,w) < opt['image_minimum_size_threshold']: return left = 0 right = w @@ -171,8 +177,8 @@ def worker(path, opt, split_mode=False, left_img=True): crop_img = cv2.resize(crop_img, dsize, interpolation = cv2.INTER_AREA) cv2.imwrite( osp.join(opt['save_folder'], - img_name.replace('.jpg', '_l{:05d}_s{:03d}.png'.format(left, index))), crop_img, - [cv2.IMWRITE_PNG_COMPRESSION, opt['compression_level']]) + img_name.replace('.jpg', '_l{:05d}_s{:03d}.jpg'.format(left, index))), crop_img, + [cv2.IMWRITE_JPEG_QUALITY, opt['compression_level']]) return 'Processing {:s} ...'.format(img_name)