Several new spsr nets
This commit is contained in:
parent
3c0a2d6efe
commit
3ab39f0d22
|
@ -4,7 +4,10 @@ import torch.nn as nn
|
|||
import torch.nn.functional as F
|
||||
from models.archs import SPSR_util as B
|
||||
from .RRDBNet_arch import RRDB
|
||||
from models.archs.arch_util import ConvGnLelu, ExpansionBlock, UpconvBlock
|
||||
from models.archs.arch_util import ConvGnLelu, UpconvBlock
|
||||
from models.archs.SwitchedResidualGenerator_arch import MultiConvBlock, ConvBasisMultiplexer, ConfigurableSwitchComputer
|
||||
from switched_conv_util import save_attention_to_image_rgb
|
||||
import functools
|
||||
|
||||
|
||||
class ImageGradient(nn.Module):
|
||||
|
@ -250,6 +253,7 @@ class SPSRNetSimplified(nn.Module):
|
|||
self.b_proc_block_3 = RRDB(nf, gc=32)
|
||||
self.b_concat_decimate_4 = ConvGnLelu(2 * nf, nf, kernel_size=1, norm=False, activation=False, bias=False)
|
||||
self.b_proc_block_4 = RRDB(nf, gc=32)
|
||||
|
||||
# Upsampling
|
||||
self.grad_lr_conv = ConvGnLelu(nf, nf, kernel_size=3, norm=False, activation=True, bias=False)
|
||||
b_upsampler = nn.Sequential(*[UpconvBlock(nf, nf, block=ConvGnLelu, norm=False, activation=False, bias=False) for _ in range(n_upscale)])
|
||||
|
@ -336,3 +340,214 @@ class SPSRNetSimplified(nn.Module):
|
|||
#########
|
||||
return x_out_branch, x_out, x_grad
|
||||
|
||||
|
||||
class SPSRNetSimplifiedNoSkip(nn.Module):
|
||||
def __init__(self, in_nc, out_nc, nf, nb, upscale=4):
|
||||
super(SPSRNetSimplifiedNoSkip, self).__init__()
|
||||
n_upscale = int(math.log(upscale, 2))
|
||||
|
||||
# Feature branch
|
||||
self.model_fea_conv = ConvGnLelu(in_nc, nf, kernel_size=3, norm=False, activation=False)
|
||||
self.model_shortcut_blk = nn.Sequential(*[RRDB(nf, gc=32) for _ in range(nb)])
|
||||
self.feature_lr_conv = ConvGnLelu(nf, nf, kernel_size=3, norm=False, activation=False)
|
||||
self.model_upsampler = nn.Sequential(*[UpconvBlock(nf, nf, block=ConvGnLelu, norm=False, activation=False, bias=False) for _ in range(n_upscale)])
|
||||
self.feature_hr_conv1 = ConvGnLelu(nf, nf, kernel_size=3, norm=False, activation=True, bias=False)
|
||||
self.feature_hr_conv2 = ConvGnLelu(nf, nf, kernel_size=3, norm=False, activation=False, bias=False)
|
||||
|
||||
# Grad branch
|
||||
self.get_g_nopadding = ImageGradientNoPadding()
|
||||
self.b_fea_conv = ConvGnLelu(in_nc, nf, kernel_size=3, norm=False, activation=False, bias=False)
|
||||
self.b_concat_decimate_1 = ConvGnLelu(2 * nf, nf, kernel_size=1, norm=False, activation=False, bias=False)
|
||||
self.b_proc_block_1 = RRDB(nf, gc=32)
|
||||
self.b_concat_decimate_2 = ConvGnLelu(2 * nf, nf, kernel_size=1, norm=False, activation=False, bias=False)
|
||||
self.b_proc_block_2 = RRDB(nf, gc=32)
|
||||
self.b_concat_decimate_3 = ConvGnLelu(2 * nf, nf, kernel_size=1, norm=False, activation=False, bias=False)
|
||||
self.b_proc_block_3 = RRDB(nf, gc=32)
|
||||
self.b_concat_decimate_4 = ConvGnLelu(2 * nf, nf, kernel_size=1, norm=False, activation=False, bias=False)
|
||||
self.b_proc_block_4 = RRDB(nf, gc=32)
|
||||
# Upsampling
|
||||
self.grad_lr_conv = ConvGnLelu(nf, nf, kernel_size=3, norm=False, activation=True, bias=False)
|
||||
b_upsampler = nn.Sequential(*[UpconvBlock(nf, nf, block=ConvGnLelu, norm=False, activation=False, bias=False) for _ in range(n_upscale)])
|
||||
grad_hr_conv1 = ConvGnLelu(nf, nf, kernel_size=3, norm=False, activation=True, bias=False)
|
||||
grad_hr_conv2 = ConvGnLelu(nf, nf, kernel_size=3, norm=False, activation=False, bias=False)
|
||||
self.branch_upsample = B.sequential(*b_upsampler, grad_hr_conv1, grad_hr_conv2)
|
||||
# Conv used to output grad branch shortcut.
|
||||
self.grad_branch_output_conv = ConvGnLelu(nf, out_nc, kernel_size=1, norm=False, activation=False, bias=False)
|
||||
|
||||
# Conjoin branch.
|
||||
# Note: "_branch_pretrain" is a special tag used to denote parameters that get pretrained before the rest.
|
||||
self._branch_pretrain_concat = ConvGnLelu(nf * 2, nf, kernel_size=1, norm=False, activation=False, bias=False)
|
||||
self._branch_pretrain_block = RRDB(nf * 2, gc=32)
|
||||
self._branch_pretrain_HR_conv0 = ConvGnLelu(nf, nf, kernel_size=3, norm=False, activation=True, bias=False)
|
||||
self._branch_pretrain_HR_conv1 = ConvGnLelu(nf, out_nc, kernel_size=3, norm=False, activation=False, bias=False)
|
||||
|
||||
def forward(self, x):
|
||||
|
||||
x_grad = self.get_g_nopadding(x)
|
||||
x = self.model_fea_conv(x)
|
||||
|
||||
x_ori = x
|
||||
for i in range(5):
|
||||
x = self.model_shortcut_blk[i](x)
|
||||
x_fea1 = x
|
||||
|
||||
for i in range(5):
|
||||
x = self.model_shortcut_blk[i + 5](x)
|
||||
x_fea2 = x
|
||||
|
||||
for i in range(5):
|
||||
x = self.model_shortcut_blk[i + 10](x)
|
||||
x_fea3 = x
|
||||
|
||||
for i in range(5):
|
||||
x = self.model_shortcut_blk[i + 15](x)
|
||||
x_fea4 = x
|
||||
|
||||
x = self.model_shortcut_blk[20:](x)
|
||||
x = self.feature_lr_conv(x)
|
||||
|
||||
# short cut
|
||||
x = x_ori + x
|
||||
x = self.model_upsampler(x)
|
||||
x = self.feature_hr_conv1(x)
|
||||
x = self.feature_hr_conv2(x)
|
||||
|
||||
x_b_fea = self.b_fea_conv(x_grad)
|
||||
x_cat_1 = self.b_proc_block_1(x_b_fea)
|
||||
x_cat_2 = self.b_proc_block_2(x_cat_1)
|
||||
x_cat_3 = self.b_proc_block_3(x_cat_2)
|
||||
x_cat_4 = self.b_proc_block_4(x_cat_3)
|
||||
x_cat_4 = x_cat_4 + x_b_fea
|
||||
x_cat_4 = self.grad_lr_conv(x_cat_4)
|
||||
|
||||
# short cut
|
||||
x_branch = self.branch_upsample(x_cat_4)
|
||||
x_out_branch = self.grad_branch_output_conv(x_branch)
|
||||
|
||||
########
|
||||
x_branch_d = x_branch
|
||||
x__branch_pretrain_cat = torch.cat([x_branch_d, x], dim=1)
|
||||
x__branch_pretrain_cat = self._branch_pretrain_block(x__branch_pretrain_cat)
|
||||
x_out = self._branch_pretrain_concat(x__branch_pretrain_cat)
|
||||
x_out = self._branch_pretrain_HR_conv0(x_out)
|
||||
x_out = self._branch_pretrain_HR_conv1(x_out)
|
||||
|
||||
#########
|
||||
return x_out_branch, x_out, x_grad
|
||||
|
||||
|
||||
class SwitchedSpsr(nn.Module):
|
||||
def __init__(self, in_nc, out_nc, nf, nb, upscale=4):
|
||||
super(SwitchedSpsr, self).__init__()
|
||||
n_upscale = int(math.log(upscale, 2))
|
||||
|
||||
# switch options
|
||||
transformation_filters = nf
|
||||
switch_filters = nf
|
||||
switch_reductions = 3
|
||||
switch_processing_layers = 2
|
||||
trans_counts = 8
|
||||
multiplx_fn = functools.partial(ConvBasisMultiplexer, transformation_filters, switch_filters, switch_reductions,
|
||||
switch_processing_layers, trans_counts)
|
||||
pretransform_fn = functools.partial(ConvGnLelu, transformation_filters, transformation_filters, norm=False, bias=False, weight_init_factor=.1)
|
||||
transform_fn = functools.partial(MultiConvBlock, transformation_filters, int(transformation_filters * 1.5),
|
||||
transformation_filters, kernel_size=3, depth=trans_layers,
|
||||
weight_init_factor=.1)
|
||||
|
||||
# Feature branch
|
||||
self.model_fea_conv = ConvGnLelu(in_nc, nf, kernel_size=3, norm=False, activation=False)
|
||||
self.sw1 = ConfigurableSwitchComputer(transformation_filters, multiplx_fn,
|
||||
pre_transform_block=pretransform_fn, transform_block=transform_fn,
|
||||
attention_norm=True,
|
||||
transform_count=trans_counts, init_temp=10,
|
||||
add_scalable_noise_to_transforms=True)
|
||||
self.sw2 = ConfigurableSwitchComputer(transformation_filters, multiplx_fn,
|
||||
pre_transform_block=pretransform_fn, transform_block=transform_fn,
|
||||
attention_norm=True,
|
||||
transform_count=trans_counts, init_temp=10,
|
||||
add_scalable_noise_to_transforms=True)
|
||||
self.feature_lr_conv = ConvGnLelu(nf, nf, kernel_size=3, norm=False, activation=False)
|
||||
self.model_upsampler = nn.Sequential(*[UpconvBlock(nf, nf, block=ConvGnLelu, norm=False, activation=False, bias=False) for _ in range(n_upscale)])
|
||||
self.feature_hr_conv1 = ConvGnLelu(nf, nf, kernel_size=3, norm=False, activation=True, bias=False)
|
||||
self.feature_hr_conv2 = ConvGnLelu(nf, nf, kernel_size=3, norm=False, activation=False, bias=False)
|
||||
|
||||
# Grad branch
|
||||
self.get_g_nopadding = ImageGradientNoPadding()
|
||||
self.b_fea_conv = ConvGnLelu(in_nc, nf, kernel_size=3, norm=False, activation=False, bias=False)
|
||||
self.sw_grad = ConfigurableSwitchComputer(transformation_filters, multiplx_fn,
|
||||
pre_transform_block=pretransform_fn, transform_block=transform_fn,
|
||||
attention_norm=True,
|
||||
transform_count=trans_counts, init_temp=10,
|
||||
add_scalable_noise_to_transforms=True)
|
||||
# Upsampling
|
||||
self.grad_lr_conv = ConvGnLelu(nf, nf, kernel_size=3, norm=False, activation=True, bias=False)
|
||||
b_upsampler = nn.Sequential(*[UpconvBlock(nf, nf, block=ConvGnLelu, norm=False, activation=False, bias=False) for _ in range(n_upscale)])
|
||||
grad_hr_conv1 = ConvGnLelu(nf, nf, kernel_size=3, norm=False, activation=True, bias=False)
|
||||
grad_hr_conv2 = ConvGnLelu(nf, nf, kernel_size=3, norm=False, activation=False, bias=False)
|
||||
self.branch_upsample = B.sequential(*b_upsampler, grad_hr_conv1, grad_hr_conv2)
|
||||
# Conv used to output grad branch shortcut.
|
||||
self.grad_branch_output_conv = ConvGnLelu(nf, out_nc, kernel_size=1, norm=False, activation=False, bias=False)
|
||||
|
||||
# Conjoin branch.
|
||||
# Note: "_branch_pretrain" is a special tag used to denote parameters that get pretrained before the rest.
|
||||
self._branch_pretrain_concat = ConvGnLelu(nf * 2, nf, kernel_size=1, norm=False, activation=False, bias=False)
|
||||
self._branch_pretrain_sw = ConfigurableSwitchComputer(transformation_filters, multiplx_fn,
|
||||
pre_transform_block=pretransform_fn, transform_block=transform_fn,
|
||||
attention_norm=True,
|
||||
transform_count=trans_counts, init_temp=10,
|
||||
add_scalable_noise_to_transforms=True)
|
||||
self._branch_pretrain_HR_conv0 = ConvGnLelu(nf, nf, kernel_size=3, norm=False, activation=True, bias=False)
|
||||
self._branch_pretrain_HR_conv1 = ConvGnLelu(nf, out_nc, kernel_size=3, norm=False, activation=False, bias=False)
|
||||
self.switches = [self.sw1, self.sw2, self.sw_grad, self._branch_pretrain_sw]
|
||||
self.attentions = None
|
||||
self.init_temperature = 10
|
||||
self.final_temperature_step = 10000
|
||||
|
||||
def forward(self, x):
|
||||
x_grad = self.get_g_nopadding(x)
|
||||
x = self.model_fea_conv(x)
|
||||
|
||||
x1, a1 = self.sw1(x, True)
|
||||
x2, a2 = self.sw2(x1, True)
|
||||
x_fea = self.feature_lr_conv(x2)
|
||||
x_fea = self.model_upsampler(x_fea)
|
||||
x_fea = self.feature_hr_conv1(x_fea)
|
||||
x_fea = self.feature_hr_conv2(x_fea)
|
||||
|
||||
x_b_fea = self.b_fea_conv(x_grad)
|
||||
x_grad, a3 = self.sw_grad(x_b_fea, att_in=x1, output_attention_weights=True)
|
||||
x_grad = self.grad_lr_conv(x_grad)
|
||||
x_grad = self.branch_upsample(x_grad)
|
||||
x_out_branch = self.grad_branch_output_conv(x_grad)
|
||||
|
||||
x__branch_pretrain_cat = torch.cat([x_grad, x_fea], dim=1)
|
||||
x__branch_pretrain_cat, a4 = self._branch_pretrain_sw(x__branch_pretrain_cat, True)
|
||||
x_out = self._branch_pretrain_concat(x__branch_pretrain_cat)
|
||||
x_out = self._branch_pretrain_HR_conv0(x_out)
|
||||
x_out = self._branch_pretrain_HR_conv1(x_out)
|
||||
|
||||
return x_out_branch, x_out, x_grad
|
||||
|
||||
def set_temperature(self, temp):
|
||||
[sw.set_temperature(temp) for sw in self.switches]
|
||||
|
||||
def update_for_step(self, step, experiments_path='.'):
|
||||
if self.attentions:
|
||||
temp = max(1, 1 + self.init_temperature *
|
||||
(self.final_temperature_step - step) / self.final_temperature_step)
|
||||
self.set_temperature(temp)
|
||||
if step % 50 == 0:
|
||||
output_path = os.path.join(experiments_path, "attention_maps", "a%i")
|
||||
prefix = "attention_map_%i_%%i.png" % (step,)
|
||||
[save_attention_to_image_rgb(output_path % (i,), self.attentions[i], self.transformation_counts, prefix, step) for i in range(len(self.attentions))]
|
||||
|
||||
def get_debug_values(self, step):
|
||||
temp = self.switches[0].switch.temperature
|
||||
mean_hists = [compute_attention_specificity(att, 2) for att in self.attentions]
|
||||
means = [i[0] for i in mean_hists]
|
||||
hists = [i[1].clone().detach().cpu().flatten() for i in mean_hists]
|
||||
val = {"switch_temperature": temp}
|
||||
for i in range(len(means)):
|
||||
val["switch_%i_specificity" % (i,)] = means[i]
|
||||
val["switch_%i_histogram" % (i,)] = hists[i]
|
||||
return val
|
||||
|
|
|
@ -134,7 +134,10 @@ class ConfigurableSwitchComputer(nn.Module):
|
|||
# depending on its needs.
|
||||
self.psc_scale = nn.Parameter(torch.full((1,), float(.1)))
|
||||
|
||||
def forward(self, x, output_attention_weights=False, fixed_scale=1):
|
||||
def forward(self, x, output_attention_weights=False, att_in=None, fixed_scale=1):
|
||||
if att_in is None:
|
||||
att_in = x
|
||||
|
||||
identity = x
|
||||
if self.add_noise:
|
||||
rand_feature = torch.randn_like(x) * self.noise_scale
|
||||
|
@ -143,7 +146,7 @@ class ConfigurableSwitchComputer(nn.Module):
|
|||
if self.pre_transform:
|
||||
x = self.pre_transform(x)
|
||||
xformed = [t.forward(x) for t in self.transforms]
|
||||
m = self.multiplexer(identity)
|
||||
m = self.multiplexer(att_in)
|
||||
|
||||
|
||||
outputs, attention = self.switch(xformed, m, True)
|
||||
|
|
|
@ -108,6 +108,9 @@ def define_G(opt, net_key='network_G'):
|
|||
elif which_model == 'spsr_net_improved':
|
||||
netG = spsr.SPSRNetSimplified(in_nc=opt_net['in_nc'], out_nc=opt_net['out_nc'], nf=opt_net['nf'],
|
||||
nb=opt_net['nb'], upscale=opt_net['scale'])
|
||||
elif which_model == 'spsr_net_improved_noskip':
|
||||
netG = spsr.SPSRNetSimplifiedNoSkip(in_nc=opt_net['in_nc'], out_nc=opt_net['out_nc'], nf=opt_net['nf'],
|
||||
nb=opt_net['nb'], upscale=opt_net['scale'])
|
||||
|
||||
# image corruption
|
||||
elif which_model == 'HighToLowResNet':
|
||||
|
|
|
@ -32,7 +32,7 @@ def init_dist(backend='nccl', **kwargs):
|
|||
def main():
|
||||
#### options
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_imgset_spsr_rrdb.yml')
|
||||
parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_imgset_spsr_rrdb_noskip.yml')
|
||||
parser.add_argument('--launcher', choices=['none', 'pytorch'], default='none',
|
||||
help='job launcher')
|
||||
parser.add_argument('--local_rank', type=int, default=0)
|
||||
|
|
22
sandbox.py
Normal file
22
sandbox.py
Normal file
|
@ -0,0 +1,22 @@
|
|||
import torch
|
||||
import torchvision
|
||||
from PIL import Image
|
||||
|
||||
def load_img(path):
|
||||
im = Image.open(path)
|
||||
return torchvision.transforms.ToTensor()(im)
|
||||
|
||||
def save_img(t, path):
|
||||
torchvision.utils.save_image(t, path)
|
||||
|
||||
img = load_img("me.png")
|
||||
# add zeros to the imaginary component
|
||||
img = torch.stack([img, torch.zeros_like(img)], dim=-1)
|
||||
fft = torch.fft(img, signal_ndim=2)
|
||||
fft_d = torch.zeros_like(fft)
|
||||
for i in range(-5, 5):
|
||||
diag = torch.diagonal(fft, offset=i, dim1=1, dim2=2)
|
||||
diag_em = torch.diag_embed(diag, offset=i, dim1=1, dim2=2)
|
||||
fft_d += diag_em
|
||||
resamp_img = torch.ifft(fft_d, signal_ndim=2)[:, :, :, 0]
|
||||
save_img(resamp_img, "resampled.png")
|
Loading…
Reference in New Issue
Block a user