New dataset, initial work
This commit is contained in:
parent
9a17ade550
commit
3cb2a9a9d3
28
codes/data/chunk_with_reference.py
Normal file
28
codes/data/chunk_with_reference.py
Normal file
|
@ -0,0 +1,28 @@
|
|||
import os.path as osp
|
||||
from data import util
|
||||
import torch
|
||||
|
||||
# Iterable that reads all the images in a directory that contains a reference image, tile images and center coordinates.
|
||||
class ChunkWithReference:
|
||||
def __init__(self, opt, path):
|
||||
self.opt = opt
|
||||
self.path = path
|
||||
self.ref = None # This is loaded on the fly.
|
||||
self.cache_ref = opt['cache_ref'] if 'cache_ref' in opt.keys() else True
|
||||
self.tiles = util.get_image_paths('img', path)
|
||||
|
||||
def __getitem__(self, item):
|
||||
if self.cache_ref:
|
||||
if self.ref is None:
|
||||
self.ref = util.read_img(None, osp.join(self.path, "ref.jpg"))
|
||||
self.centers = torch.load(osp.join(self.path, "centers.pt"))
|
||||
ref = self.ref
|
||||
centers = self.centers
|
||||
else:
|
||||
self.ref = util.read_img(None, osp.join(self.path, "ref.jpg"))
|
||||
self.centers = torch.load(osp.join(self.path, "centers.pt"))
|
||||
|
||||
return self.tiles[item], ref, centers[item], path
|
||||
|
||||
def __len__(self):
|
||||
return len(self.tiles)
|
72
codes/data/image_corruptor.py
Normal file
72
codes/data/image_corruptor.py
Normal file
|
@ -0,0 +1,72 @@
|
|||
import random
|
||||
|
||||
|
||||
# Performs image corruption on a list of images from a configurable set of corruption
|
||||
# options.
|
||||
class ImageCorruptor:
|
||||
def __init__(self, opt):
|
||||
self.num_corrupts = opt['num_corrupts_per_image'] if 'num_corrupts_per_image' in opt.keys() else 2
|
||||
self.corruptions_enabled = opt['corruptions']
|
||||
|
||||
def corrupt_images(self, imgs):
|
||||
augmentations = random.choice(self.corruptions_enabled, k=self.num_corrupts)
|
||||
# Source of entropy, which should be used across all images.
|
||||
rand_int = random.randint(1, 999999)
|
||||
|
||||
corrupted_imgs = []
|
||||
for img in imgs:
|
||||
for aug in augmentations:
|
||||
if 'color_quantization' in aug:
|
||||
# Color quantization
|
||||
quant_div = 2 ** random.randint(1, 4)
|
||||
augmentation_tensor[AUG_TENSOR_COLOR_QUANT] = float(quant_div) / 5.0
|
||||
|
||||
pass
|
||||
elif 'gaussian_blur' in aug:
|
||||
# Gaussian Blur
|
||||
kernel = random.randint(1, 3) * 3
|
||||
image = cv2.GaussianBlur(image, (kernel, kernel), 3)
|
||||
augmentation_tensor[AUG_TENSOR_BLUR] = float(kernel) / 9
|
||||
elif 'median_blur' in aug:
|
||||
# Median Blur
|
||||
kernel = random.randint(1, 3) * 3
|
||||
image = cv2.medianBlur(image, kernel)
|
||||
augmentation_tensor[AUG_TENSOR_BLUR] = float(kernel) / 9
|
||||
elif 'motion_blur' in aug:
|
||||
# Motion blur
|
||||
intensity = random.randrange(1, 9)
|
||||
image = self.motion_blur(image, intensity, random.randint(0, 360))
|
||||
augmentation_tensor[AUG_TENSOR_BLUR] = intensity / 9
|
||||
elif 'smooth_blur' in aug:
|
||||
# Smooth blur
|
||||
kernel = random.randint(1, 3) * 3
|
||||
image = cv2.blur(image, ksize=kernel)
|
||||
augmentation_tensor[AUG_TENSOR_BLUR] = kernel / 9
|
||||
elif 'block_noise' in aug:
|
||||
# Block noise
|
||||
noise_intensity = random.randint(3, 10)
|
||||
image += np.random.randn()
|
||||
pass
|
||||
elif 'lq_resampling' in aug:
|
||||
# Bicubic LR->HR
|
||||
pass
|
||||
elif 'color_shift' in aug:
|
||||
# Color shift
|
||||
pass
|
||||
elif 'interlacing' in aug:
|
||||
# Interlacing distortion
|
||||
pass
|
||||
elif 'chromatic_aberration' in aug:
|
||||
# Chromatic aberration
|
||||
pass
|
||||
elif 'noise' in aug:
|
||||
# Noise
|
||||
pass
|
||||
elif 'jpeg' in aug:
|
||||
# JPEG compression
|
||||
pass
|
||||
elif 'saturation' in aug:
|
||||
# Lightening / saturation
|
||||
pass
|
||||
|
||||
return corrupted_imgs
|
97
codes/data/single_image_dataset.py
Normal file
97
codes/data/single_image_dataset.py
Normal file
|
@ -0,0 +1,97 @@
|
|||
from torch.utils import data
|
||||
from data.chunk_with_reference import ChunkWithReference
|
||||
from data.image_corruptor import ImageCorruptor
|
||||
import os
|
||||
from bisect import bisect_left
|
||||
import cv2
|
||||
import torch
|
||||
|
||||
|
||||
# Builds a dataset composed of a set of folders. Each folder represents a single high resolution image that has been
|
||||
# chunked into patches of fixed size. A reference image is included as well as a list of center points for each patch.
|
||||
class SingleImageDataset(data.Dataset):
|
||||
|
||||
def __init__(self, opt):
|
||||
self.corruptor = ImageCorruptor(opt)
|
||||
self.target_hq_size = opt['target_size'] if 'target_size' in opt.keys() else None
|
||||
self.multiple = opt['force_multiple'] if 'force_multiple' in opt.keys() else 1
|
||||
self.for_eval = opt['eval'] if 'eval' in opt.keys() else False
|
||||
self.scale = opt['scale'] if not self.for_eval else 1
|
||||
self.paths = opt['paths']
|
||||
if not isinstance(self.paths, list):
|
||||
self.paths = [self.paths]
|
||||
self.weights = [1]
|
||||
else:
|
||||
self.weights = opt['weights']
|
||||
for path, weight in zip(self.paths, self.weights):
|
||||
chunks = [ChunkWithReference(opt, d) for d in os.scandir(path) if d.is_dir()]
|
||||
for w in range(weight):
|
||||
self.chunks.extend(chunks)
|
||||
|
||||
# Indexing this dataset is tricky. Aid it by having a sorted list of starting indices for each chunk.
|
||||
start = 0
|
||||
self.starting_indices = []
|
||||
for c in chunks:
|
||||
self.starting_indices.append(start)
|
||||
start += len(c)
|
||||
self.len = start
|
||||
|
||||
def binary_search(elem, sorted_list):
|
||||
# https://docs.python.org/3/library/bisect.html
|
||||
'Locate the leftmost value exactly equal to x'
|
||||
i = bisect_left(sorted_list, elem)
|
||||
if i != len(sorted_list) and sorted_list[i] == elem:
|
||||
return i
|
||||
return -1
|
||||
|
||||
def resize_point(self, point, orig_dim, new_dim):
|
||||
oh, ow = orig_dim
|
||||
nh, nw = new_dim
|
||||
dh, dw = float(nh) / float(oh), float(nw) / float(ow)
|
||||
point[0] = int(dh * float(point[0]))
|
||||
point[1] = int(dw * float(point[1]))
|
||||
return point
|
||||
|
||||
def __getitem__(self, item):
|
||||
chunk_ind = self.binary_search(item, self.starting_indices)
|
||||
hq, hq_ref, hq_center, path = self.chunks[item-self.starting_indices[chunk_ind]]
|
||||
|
||||
# Enforce size constraints
|
||||
h, w, _ = hq.shape
|
||||
if self.target_hq_size is not None and self.target_hq_size != h:
|
||||
# It is assumed that the target size is a square.
|
||||
target_size = (self.target_hq_size, self.target_hq_size)
|
||||
hq = cv2.resize(hq, target_size, interpolation=cv2.INTER_LINEAR)
|
||||
hq_ref = cv2.resize(hq_ref, target_size, interpolation=cv2.INTER_LINEAR)
|
||||
hq_center = self.resize_point(hq_center, (h, w), target_size)
|
||||
h, w = self.target_hq_size, self.target_hq_size
|
||||
hq_multiple = self.multiple * self.scale # Multiple must apply to LQ image.
|
||||
if h % hq_multiple != 0 or w % hq_multiple != 0:
|
||||
h, w = (h - h % hq_multiple), (w - w % hq_multiple)
|
||||
hq_center = self.resize_point(hq_center, hq.shape[:1], (h, w))
|
||||
hq = hq[:h, :w, :]
|
||||
hq_ref = hq_ref[:h, :w, :]
|
||||
|
||||
# Synthesize the LQ image
|
||||
if self.for_eval:
|
||||
lq, lq_ref = hq, hq_ref
|
||||
else:
|
||||
lq = cv2.resize(hq, (h // self.scale, w // self.scale), interpolation=cv2.INTER_LINEAR)
|
||||
lq_ref = cv2.resize(hq_ref, (h // self.scale, w // self.scale), interpolation=cv2.INTER_LINEAR)
|
||||
lq_center = self.resize_point(hq_center, (h, w), lq.shape[:1])
|
||||
|
||||
# Corrupt the LQ image
|
||||
lq = self.corruptor.corrupt_images([lq])
|
||||
|
||||
# Convert to torch tensor
|
||||
hq = torch.from_numpy(np.ascontiguousarray(np.transpose(hq, (2, 0, 1)))).float()
|
||||
hq_ref = torch.from_numpy(np.ascontiguousarray(np.transpose(hq_ref, (2, 0, 1)))).float()
|
||||
lq = F.to_tensor(lq)
|
||||
lq_ref = F.to_tensor(lq_ref)
|
||||
|
||||
return {'LQ': lq, 'GT': hq, 'gt_fullsize_ref': hq_ref, 'lq_fullsize_ref': lq_ref,
|
||||
'lq_center': lq_center, 'gt_center': hq_center,
|
||||
'LQ_path': path, 'GT_path': path}
|
||||
|
||||
def __len__(self):
|
||||
return self.len
|
Loading…
Reference in New Issue
Block a user