New dataset, initial work

This commit is contained in:
James Betker 2020-09-18 09:49:13 -06:00
parent 9a17ade550
commit 3cb2a9a9d3
3 changed files with 197 additions and 0 deletions

View File

@ -0,0 +1,28 @@
import os.path as osp
from data import util
import torch
# Iterable that reads all the images in a directory that contains a reference image, tile images and center coordinates.
class ChunkWithReference:
def __init__(self, opt, path):
self.opt = opt
self.path = path
self.ref = None # This is loaded on the fly.
self.cache_ref = opt['cache_ref'] if 'cache_ref' in opt.keys() else True
self.tiles = util.get_image_paths('img', path)
def __getitem__(self, item):
if self.cache_ref:
if self.ref is None:
self.ref = util.read_img(None, osp.join(self.path, "ref.jpg"))
self.centers = torch.load(osp.join(self.path, "centers.pt"))
ref = self.ref
centers = self.centers
else:
self.ref = util.read_img(None, osp.join(self.path, "ref.jpg"))
self.centers = torch.load(osp.join(self.path, "centers.pt"))
return self.tiles[item], ref, centers[item], path
def __len__(self):
return len(self.tiles)

View File

@ -0,0 +1,72 @@
import random
# Performs image corruption on a list of images from a configurable set of corruption
# options.
class ImageCorruptor:
def __init__(self, opt):
self.num_corrupts = opt['num_corrupts_per_image'] if 'num_corrupts_per_image' in opt.keys() else 2
self.corruptions_enabled = opt['corruptions']
def corrupt_images(self, imgs):
augmentations = random.choice(self.corruptions_enabled, k=self.num_corrupts)
# Source of entropy, which should be used across all images.
rand_int = random.randint(1, 999999)
corrupted_imgs = []
for img in imgs:
for aug in augmentations:
if 'color_quantization' in aug:
# Color quantization
quant_div = 2 ** random.randint(1, 4)
augmentation_tensor[AUG_TENSOR_COLOR_QUANT] = float(quant_div) / 5.0
pass
elif 'gaussian_blur' in aug:
# Gaussian Blur
kernel = random.randint(1, 3) * 3
image = cv2.GaussianBlur(image, (kernel, kernel), 3)
augmentation_tensor[AUG_TENSOR_BLUR] = float(kernel) / 9
elif 'median_blur' in aug:
# Median Blur
kernel = random.randint(1, 3) * 3
image = cv2.medianBlur(image, kernel)
augmentation_tensor[AUG_TENSOR_BLUR] = float(kernel) / 9
elif 'motion_blur' in aug:
# Motion blur
intensity = random.randrange(1, 9)
image = self.motion_blur(image, intensity, random.randint(0, 360))
augmentation_tensor[AUG_TENSOR_BLUR] = intensity / 9
elif 'smooth_blur' in aug:
# Smooth blur
kernel = random.randint(1, 3) * 3
image = cv2.blur(image, ksize=kernel)
augmentation_tensor[AUG_TENSOR_BLUR] = kernel / 9
elif 'block_noise' in aug:
# Block noise
noise_intensity = random.randint(3, 10)
image += np.random.randn()
pass
elif 'lq_resampling' in aug:
# Bicubic LR->HR
pass
elif 'color_shift' in aug:
# Color shift
pass
elif 'interlacing' in aug:
# Interlacing distortion
pass
elif 'chromatic_aberration' in aug:
# Chromatic aberration
pass
elif 'noise' in aug:
# Noise
pass
elif 'jpeg' in aug:
# JPEG compression
pass
elif 'saturation' in aug:
# Lightening / saturation
pass
return corrupted_imgs

View File

@ -0,0 +1,97 @@
from torch.utils import data
from data.chunk_with_reference import ChunkWithReference
from data.image_corruptor import ImageCorruptor
import os
from bisect import bisect_left
import cv2
import torch
# Builds a dataset composed of a set of folders. Each folder represents a single high resolution image that has been
# chunked into patches of fixed size. A reference image is included as well as a list of center points for each patch.
class SingleImageDataset(data.Dataset):
def __init__(self, opt):
self.corruptor = ImageCorruptor(opt)
self.target_hq_size = opt['target_size'] if 'target_size' in opt.keys() else None
self.multiple = opt['force_multiple'] if 'force_multiple' in opt.keys() else 1
self.for_eval = opt['eval'] if 'eval' in opt.keys() else False
self.scale = opt['scale'] if not self.for_eval else 1
self.paths = opt['paths']
if not isinstance(self.paths, list):
self.paths = [self.paths]
self.weights = [1]
else:
self.weights = opt['weights']
for path, weight in zip(self.paths, self.weights):
chunks = [ChunkWithReference(opt, d) for d in os.scandir(path) if d.is_dir()]
for w in range(weight):
self.chunks.extend(chunks)
# Indexing this dataset is tricky. Aid it by having a sorted list of starting indices for each chunk.
start = 0
self.starting_indices = []
for c in chunks:
self.starting_indices.append(start)
start += len(c)
self.len = start
def binary_search(elem, sorted_list):
# https://docs.python.org/3/library/bisect.html
'Locate the leftmost value exactly equal to x'
i = bisect_left(sorted_list, elem)
if i != len(sorted_list) and sorted_list[i] == elem:
return i
return -1
def resize_point(self, point, orig_dim, new_dim):
oh, ow = orig_dim
nh, nw = new_dim
dh, dw = float(nh) / float(oh), float(nw) / float(ow)
point[0] = int(dh * float(point[0]))
point[1] = int(dw * float(point[1]))
return point
def __getitem__(self, item):
chunk_ind = self.binary_search(item, self.starting_indices)
hq, hq_ref, hq_center, path = self.chunks[item-self.starting_indices[chunk_ind]]
# Enforce size constraints
h, w, _ = hq.shape
if self.target_hq_size is not None and self.target_hq_size != h:
# It is assumed that the target size is a square.
target_size = (self.target_hq_size, self.target_hq_size)
hq = cv2.resize(hq, target_size, interpolation=cv2.INTER_LINEAR)
hq_ref = cv2.resize(hq_ref, target_size, interpolation=cv2.INTER_LINEAR)
hq_center = self.resize_point(hq_center, (h, w), target_size)
h, w = self.target_hq_size, self.target_hq_size
hq_multiple = self.multiple * self.scale # Multiple must apply to LQ image.
if h % hq_multiple != 0 or w % hq_multiple != 0:
h, w = (h - h % hq_multiple), (w - w % hq_multiple)
hq_center = self.resize_point(hq_center, hq.shape[:1], (h, w))
hq = hq[:h, :w, :]
hq_ref = hq_ref[:h, :w, :]
# Synthesize the LQ image
if self.for_eval:
lq, lq_ref = hq, hq_ref
else:
lq = cv2.resize(hq, (h // self.scale, w // self.scale), interpolation=cv2.INTER_LINEAR)
lq_ref = cv2.resize(hq_ref, (h // self.scale, w // self.scale), interpolation=cv2.INTER_LINEAR)
lq_center = self.resize_point(hq_center, (h, w), lq.shape[:1])
# Corrupt the LQ image
lq = self.corruptor.corrupt_images([lq])
# Convert to torch tensor
hq = torch.from_numpy(np.ascontiguousarray(np.transpose(hq, (2, 0, 1)))).float()
hq_ref = torch.from_numpy(np.ascontiguousarray(np.transpose(hq_ref, (2, 0, 1)))).float()
lq = F.to_tensor(lq)
lq_ref = F.to_tensor(lq_ref)
return {'LQ': lq, 'GT': hq, 'gt_fullsize_ref': hq_ref, 'lq_fullsize_ref': lq_ref,
'lq_center': lq_center, 'gt_center': hq_center,
'LQ_path': path, 'GT_path': path}
def __len__(self):
return self.len