SPSR LR2
This commit is contained in:
parent
ab04ca1778
commit
3d0ece804b
|
@ -494,10 +494,11 @@ class SRGANModel(BaseModel):
|
|||
|
||||
if self.spsr_enabled and self.cri_grad_gan:
|
||||
if self.opt['train']['gan_type'] == 'crossgan':
|
||||
pred_g_fake_grad = self.netD(fake_H_grad, var_L)
|
||||
pred_g_fake_grad = self.netD_grad(fake_H_grad, var_L)
|
||||
pred_g_fake_grad_branch = self.netD_grad(fake_H_branch, var_L)
|
||||
else:
|
||||
pred_g_fake_grad = self.netD(fake_H_grad)
|
||||
pred_g_fake_grad_branch = self.netD_grad(fake_H_branch)
|
||||
pred_g_fake_grad = self.netD_grad(fake_H_grad)
|
||||
pred_g_fake_grad_branch = self.netD_grad(fake_H_branch)
|
||||
if self.opt['train']['gan_type'] in ['gan', 'pixgan', 'pixgan_fea', 'crossgan']:
|
||||
l_g_gan_grad = self.l_gan_grad_w * self.cri_grad_gan(pred_g_fake_grad, True)
|
||||
l_g_gan_grad_branch = self.l_gan_grad_w * self.cri_grad_gan(pred_g_fake_grad_branch, True)
|
||||
|
@ -685,19 +686,23 @@ class SRGANModel(BaseModel):
|
|||
for p in self.netD_grad.parameters():
|
||||
p.requires_grad = True
|
||||
self.optimizer_D_grad.zero_grad()
|
||||
for var_ref, fake_H, fake_H_grad_branch in zip(var_ref_skips, self.fake_H, self.spsr_grad_GenOut):
|
||||
for var_L, var_ref, fake_H, fake_H_grad_branch in zip(self.var_L, var_ref_skips, self.fake_H, self.spsr_grad_GenOut):
|
||||
fake_H_grad = self.get_grad_nopadding(fake_H).detach()
|
||||
var_ref_grad = self.get_grad_nopadding(var_ref)
|
||||
pred_d_real_grad = self.netD_grad(var_ref_grad)
|
||||
pred_d_fake_grad = self.netD_grad(fake_H_grad) # Tensor already detached above.
|
||||
# var_ref and fake_H already has noise added to it. We **must** add noise to fake_H_grad_branch too.
|
||||
fake_H_grad_branch = fake_H_grad_branch.detach() + noise
|
||||
pred_d_fake_grad_branch = self.netD_grad(fake_H_grad_branch)
|
||||
if self.opt['train']['gan_type'] == 'gan':
|
||||
if self.opt['train']['gan_type'] == 'crossgan':
|
||||
pred_d_real_grad = self.netD_grad(var_ref_grad, var_L)
|
||||
pred_d_fake_grad = self.netD_grad(fake_H_grad, var_L) # Tensor already detached above.
|
||||
# var_ref and fake_H already has noise added to it. We **must** add noise to fake_H_grad_branch too.
|
||||
pred_d_fake_grad_branch = self.netD_grad(fake_H_grad_branch, var_L)
|
||||
else:
|
||||
pred_d_real_grad = self.netD_grad(var_ref_grad)
|
||||
pred_d_fake_grad = self.netD_grad(fake_H_grad) # Tensor already detached above.
|
||||
# var_ref and fake_H already has noise added to it. We **must** add noise to fake_H_grad_branch too.
|
||||
pred_d_fake_grad_branch = self.netD_grad(fake_H_grad_branch)
|
||||
if self.opt['train']['gan_type'] == 'gan' or self.opt['train']['gan_type'] == 'crossgan':
|
||||
l_d_real_grad = self.cri_gan(pred_d_real_grad, True)
|
||||
l_d_fake_grad = (self.cri_gan(pred_d_fake_grad, False) + self.cri_gan(pred_d_fake_grad_branch, False)) / 2
|
||||
elif self.opt['train']['gan_type'] == 'crossgan':
|
||||
assert False
|
||||
elif self.opt['train']['gan_type'] == 'pixgan':
|
||||
real = torch.ones_like(pred_d_real_grad)
|
||||
fake = torch.zeros_like(pred_d_fake_grad)
|
||||
|
|
|
@ -670,3 +670,125 @@ class SwitchedSpsrLr(nn.Module):
|
|||
val["switch_%i_specificity" % (i,)] = means[i]
|
||||
val["switch_%i_histogram" % (i,)] = hists[i]
|
||||
return val
|
||||
|
||||
|
||||
class SwitchedSpsrLr2(nn.Module):
|
||||
def __init__(self, in_nc, out_nc, nf, upscale=4):
|
||||
super(SwitchedSpsrLr2, self).__init__()
|
||||
n_upscale = int(math.log(upscale, 2))
|
||||
|
||||
# switch options
|
||||
transformation_filters = nf
|
||||
switch_filters = nf
|
||||
switch_reductions = 3
|
||||
switch_processing_layers = 2
|
||||
self.transformation_counts = 8
|
||||
multiplx_fn = functools.partial(ConvBasisMultiplexer, transformation_filters, switch_filters, switch_reductions,
|
||||
switch_processing_layers, self.transformation_counts, use_exp2=True)
|
||||
pretransform_fn = functools.partial(ConvGnLelu, transformation_filters, transformation_filters, norm=False, bias=False, weight_init_factor=.1)
|
||||
transform_fn = functools.partial(MultiConvBlock, transformation_filters, int(transformation_filters * 1.5),
|
||||
transformation_filters, kernel_size=3, depth=3,
|
||||
weight_init_factor=.1)
|
||||
|
||||
# Feature branch
|
||||
self.model_fea_conv = ConvGnLelu(in_nc, nf, kernel_size=3, norm=False, activation=False)
|
||||
self.sw1 = ConfigurableSwitchComputer(transformation_filters, multiplx_fn,
|
||||
pre_transform_block=pretransform_fn, transform_block=transform_fn,
|
||||
attention_norm=True,
|
||||
transform_count=self.transformation_counts, init_temp=10,
|
||||
add_scalable_noise_to_transforms=True)
|
||||
self.sw2 = ConfigurableSwitchComputer(transformation_filters, multiplx_fn,
|
||||
pre_transform_block=pretransform_fn, transform_block=transform_fn,
|
||||
attention_norm=True,
|
||||
transform_count=self.transformation_counts, init_temp=10,
|
||||
add_scalable_noise_to_transforms=True)
|
||||
self.feature_lr_conv = ConvGnLelu(nf, nf, kernel_size=3, norm=True, activation=False)
|
||||
self.feature_hr_conv2 = ConvGnLelu(nf, nf, kernel_size=3, norm=False, activation=False, bias=False)
|
||||
|
||||
# Grad branch
|
||||
self.get_g_nopadding = ImageGradientNoPadding()
|
||||
self.b_fea_conv = ConvGnLelu(in_nc, nf, kernel_size=3, norm=False, activation=False, bias=False)
|
||||
mplex_grad = functools.partial(ConvBasisMultiplexer, nf * 2, nf * 2, switch_reductions,
|
||||
switch_processing_layers, self.transformation_counts // 2, use_exp2=True)
|
||||
self.sw_grad = ConfigurableSwitchComputer(transformation_filters, mplex_grad,
|
||||
pre_transform_block=pretransform_fn, transform_block=transform_fn,
|
||||
attention_norm=True,
|
||||
transform_count=self.transformation_counts // 2, init_temp=10,
|
||||
add_scalable_noise_to_transforms=True)
|
||||
# Upsampling
|
||||
self.grad_lr_conv = ConvGnLelu(nf, nf, kernel_size=3, norm=True, activation=True, bias=False)
|
||||
self.grad_hr_conv = ConvGnLelu(nf, nf, kernel_size=3, norm=False, activation=False, bias=False)
|
||||
# Conv used to output grad branch shortcut.
|
||||
self.grad_branch_output_conv = ConvGnLelu(nf, out_nc, kernel_size=1, norm=False, activation=False, bias=False)
|
||||
|
||||
# Conjoin branch.
|
||||
# Note: "_branch_pretrain" is a special tag used to denote parameters that get pretrained before the rest.
|
||||
transform_fn_cat = functools.partial(MultiConvBlock, transformation_filters * 2, int(transformation_filters * 1.5),
|
||||
transformation_filters, kernel_size=3, depth=4,
|
||||
weight_init_factor=.1)
|
||||
pretransform_fn_cat = functools.partial(ConvGnLelu, transformation_filters * 2, transformation_filters * 2, norm=False, bias=False, weight_init_factor=.1)
|
||||
self._branch_pretrain_sw = ConfigurableSwitchComputer(transformation_filters, multiplx_fn,
|
||||
pre_transform_block=pretransform_fn_cat, transform_block=transform_fn_cat,
|
||||
attention_norm=True,
|
||||
transform_count=self.transformation_counts, init_temp=10,
|
||||
add_scalable_noise_to_transforms=True)
|
||||
self.upsample = nn.Sequential(*[UpconvBlock(nf, nf, block=ConvGnLelu, norm=False, activation=False, bias=False) for _ in range(n_upscale)])
|
||||
self.upsample_grad = nn.Sequential(*[UpconvBlock(nf, nf, block=ConvGnLelu, norm=False, activation=False, bias=False) for _ in range(n_upscale)])
|
||||
self.final_lr_conv = ConvGnLelu(nf, nf, kernel_size=3, norm=True, activation=False)
|
||||
self.final_hr_conv1 = ConvGnLelu(nf, nf, kernel_size=3, norm=True, activation=True, bias=False)
|
||||
self.final_hr_conv2 = ConvGnLelu(nf, out_nc, kernel_size=3, norm=False, activation=False, bias=False)
|
||||
self.switches = [self.sw1, self.sw2, self.sw_grad, self._branch_pretrain_sw]
|
||||
self.attentions = None
|
||||
self.init_temperature = 10
|
||||
self.final_temperature_step = 10000
|
||||
|
||||
def forward(self, x):
|
||||
x_grad = self.get_g_nopadding(x)
|
||||
x = self.model_fea_conv(x)
|
||||
|
||||
x1, a1 = self.sw1(x, True)
|
||||
x2, a2 = self.sw2(x1, True)
|
||||
x_fea = self.feature_lr_conv(x2)
|
||||
x_fea = self.feature_hr_conv2(x_fea)
|
||||
|
||||
x_b_fea = self.b_fea_conv(x_grad)
|
||||
x_grad, a3 = self.sw_grad(x_b_fea, att_in=torch.cat([x1, x_b_fea], dim=1), output_attention_weights=True)
|
||||
x_grad = self.grad_lr_conv(x_grad)
|
||||
x_grad = self.grad_hr_conv(x_grad)
|
||||
x_out_branch = self.upsample_grad(x_grad)
|
||||
x_out_branch = self.grad_branch_output_conv(x_out_branch)
|
||||
|
||||
x__branch_pretrain_cat = torch.cat([x_grad, x_fea], dim=1)
|
||||
x__branch_pretrain_cat, a4 = self._branch_pretrain_sw(x__branch_pretrain_cat, att_in=x_fea, identity=x_fea, output_attention_weights=True)
|
||||
x_out = self.final_lr_conv(x__branch_pretrain_cat)
|
||||
x_out = self.upsample(x_out)
|
||||
x_out = self.final_hr_conv1(x_out)
|
||||
x_out = self.final_hr_conv2(x_out)
|
||||
|
||||
self.attentions = [a1, a2, a3, a4]
|
||||
|
||||
return x_out_branch, x_out, x_grad
|
||||
|
||||
def set_temperature(self, temp):
|
||||
[sw.set_temperature(temp) for sw in self.switches]
|
||||
|
||||
def update_for_step(self, step, experiments_path='.'):
|
||||
if self.attentions:
|
||||
temp = max(1, 1 + self.init_temperature *
|
||||
(self.final_temperature_step - step) / self.final_temperature_step)
|
||||
self.set_temperature(temp)
|
||||
if step % 200 == 0:
|
||||
output_path = os.path.join(experiments_path, "attention_maps", "a%i")
|
||||
prefix = "attention_map_%i_%%i.png" % (step,)
|
||||
[save_attention_to_image_rgb(output_path % (i,), self.attentions[i], self.transformation_counts, prefix, step) for i in range(len(self.attentions))]
|
||||
|
||||
def get_debug_values(self, step):
|
||||
temp = self.switches[0].switch.temperature
|
||||
mean_hists = [compute_attention_specificity(att, 2) for att in self.attentions]
|
||||
means = [i[0] for i in mean_hists]
|
||||
hists = [i[1].clone().detach().cpu().flatten() for i in mean_hists]
|
||||
val = {"switch_temperature": temp}
|
||||
for i in range(len(means)):
|
||||
val["switch_%i_specificity" % (i,)] = means[i]
|
||||
val["switch_%i_histogram" % (i,)] = hists[i]
|
||||
return val
|
||||
|
|
|
@ -4,7 +4,7 @@ from switched_conv import BareConvSwitch, compute_attention_specificity, Attenti
|
|||
import torch.nn.functional as F
|
||||
import functools
|
||||
from collections import OrderedDict
|
||||
from models.archs.arch_util import ConvBnLelu, ConvGnSilu, ExpansionBlock
|
||||
from models.archs.arch_util import ConvBnLelu, ConvGnSilu, ExpansionBlock, ExpansionBlock2
|
||||
from models.archs.RRDBNet_arch import ResidualDenseBlock_5C, RRDB
|
||||
from models.archs.spinenet_arch import SpineNet
|
||||
from switched_conv_util import save_attention_to_image_rgb
|
||||
|
@ -47,13 +47,16 @@ class HalvingProcessingBlock(nn.Module):
|
|||
# This is a classic u-net architecture with the goal of assigning each individual pixel an individual transform
|
||||
# switching set.
|
||||
class ConvBasisMultiplexer(nn.Module):
|
||||
def __init__(self, input_channels, base_filters, reductions, processing_depth, multiplexer_channels, use_gn=True):
|
||||
def __init__(self, input_channels, base_filters, reductions, processing_depth, multiplexer_channels, use_gn=True, use_exp2=False):
|
||||
super(ConvBasisMultiplexer, self).__init__()
|
||||
self.filter_conv = ConvGnSilu(input_channels, base_filters, bias=True)
|
||||
self.reduction_blocks = nn.ModuleList([HalvingProcessingBlock(base_filters * 2 ** i) for i in range(reductions)])
|
||||
reduction_filters = base_filters * 2 ** reductions
|
||||
self.processing_blocks = nn.Sequential(OrderedDict([('block%i' % (i,), ConvGnSilu(reduction_filters, reduction_filters, bias=False)) for i in range(processing_depth)]))
|
||||
self.expansion_blocks = nn.ModuleList([ExpansionBlock(reduction_filters // (2 ** i)) for i in range(reductions)])
|
||||
if use_exp2:
|
||||
self.expansion_blocks = nn.ModuleList([ExpansionBlock2(reduction_filters // (2 ** i)) for i in range(reductions)])
|
||||
else:
|
||||
self.expansion_blocks = nn.ModuleList([ExpansionBlock(reduction_filters // (2 ** i)) for i in range(reductions)])
|
||||
|
||||
gap = base_filters - multiplexer_channels
|
||||
cbl1_out = ((base_filters - (gap // 2)) // 4) * 4 # Must be multiples of 4 to use with group norm.
|
||||
|
|
|
@ -391,6 +391,30 @@ class ExpansionBlock(nn.Module):
|
|||
return self.process(x)
|
||||
|
||||
|
||||
# Block that upsamples 2x and reduces incoming filters by 2x. It preserves structure by taking a passthrough feed
|
||||
# along with the feature representation.
|
||||
# Differs from ExpansionBlock because it performs all processing in 2xfilter space and decimates at the last step.
|
||||
class ExpansionBlock2(nn.Module):
|
||||
def __init__(self, filters_in, filters_out=None, block=ConvGnSilu):
|
||||
super(ExpansionBlock2, self).__init__()
|
||||
if filters_out is None:
|
||||
filters_out = filters_in // 2
|
||||
self.decimate = block(filters_in, filters_out, kernel_size=1, bias=False, activation=False, norm=True)
|
||||
self.process_passthrough = block(filters_out, filters_out, kernel_size=3, bias=True, activation=False, norm=True)
|
||||
self.conjoin = block(filters_out*2, filters_out*2, kernel_size=3, bias=False, activation=True, norm=False)
|
||||
self.reduce = block(filters_out*2, filters_out, kernel_size=3, bias=False, activation=True, norm=True)
|
||||
|
||||
# input is the feature signal with shape (b, f, w, h)
|
||||
# passthrough is the structure signal with shape (b, f/2, w*2, h*2)
|
||||
# output is conjoined upsample with shape (b, f/2, w*2, h*2)
|
||||
def forward(self, input, passthrough):
|
||||
x = F.interpolate(input, scale_factor=2, mode="nearest")
|
||||
x = self.decimate(x)
|
||||
p = self.process_passthrough(passthrough)
|
||||
x = self.conjoin(torch.cat([x, p], dim=1))
|
||||
return self.reduce(x)
|
||||
|
||||
|
||||
# Similar to ExpansionBlock but does not upsample.
|
||||
class ConjoinBlock(nn.Module):
|
||||
def __init__(self, filters_in, filters_out=None, block=ConvGnSilu, norm=True):
|
||||
|
|
|
@ -115,6 +115,8 @@ def define_G(opt, net_key='network_G'):
|
|||
netG = spsr.SwitchedSpsr(in_nc=3, out_nc=3, nf=opt_net['nf'], upscale=opt_net['scale'])
|
||||
elif which_model == "spsr_switched_lr":
|
||||
netG = spsr.SwitchedSpsrLr(in_nc=3, out_nc=3, nf=opt_net['nf'], upscale=opt_net['scale'])
|
||||
elif which_model == "spsr_switched_lr2":
|
||||
netG = spsr.SwitchedSpsrLr2(in_nc=3, out_nc=3, nf=opt_net['nf'], upscale=opt_net['scale'])
|
||||
|
||||
# image corruption
|
||||
elif which_model == 'HighToLowResNet':
|
||||
|
|
Loading…
Reference in New Issue
Block a user