diff --git a/codes/data/audio/nv_tacotron_dataset.py b/codes/data/audio/nv_tacotron_dataset.py index 75dec5e5..c1052b8a 100644 --- a/codes/data/audio/nv_tacotron_dataset.py +++ b/codes/data/audio/nv_tacotron_dataset.py @@ -79,16 +79,16 @@ class TextMelLoader(torch.utils.data.Dataset): if not self.load_mel_from_disk: if filename.endswith('.wav'): audio, sampling_rate = load_wav_to_torch(filename) - audio = audio / self.max_wav_value + audio = (audio / self.max_wav_value).clip(-1,1) else: audio, sampling_rate = audio2numpy.audio_from_file(filename) audio = torch.tensor(audio) + audio = (audio.squeeze().clip(-1,1)) if sampling_rate != self.input_sample_rate: if sampling_rate < self.input_sample_rate: print(f'{filename} has a sample rate of {sampling_rate} which is lower than the requested sample rate of {self.input_sample_rate}. This is not a good idea.') audio = torch.nn.functional.interpolate(audio.unsqueeze(0).unsqueeze(1), scale_factor=self.input_sample_rate/sampling_rate, mode='area', recompute_scale_factor=False) - audio = (audio.squeeze().clip(-1,1)+1)/2 if (audio.min() < -1).any() or (audio.max() > 1).any(): print(f"Error with audio ranging for {filename}; min={audio.min()} max={audio.max()}") return None @@ -119,8 +119,8 @@ class TextMelLoader(torch.utils.data.Dataset): if mel is None or \ (self.max_mel_len is not None and mel.shape[-1] > self.max_mel_len) or \ (self.max_text_len is not None and tseq.shape[0] > self.max_text_len): - if mel is not None: - print(f"Exception {index} mel_len:{mel.shape[-1]} text_len:{tseq.shape[0]} fname: {path}") + #if mel is not None: + # print(f"Exception {index} mel_len:{mel.shape[-1]} text_len:{tseq.shape[0]} fname: {path}") # It's hard to handle this situation properly. Best bet is to return the a random valid token and skew the dataset somewhat as a result. rv = random.randint(0,len(self)-1) return self[rv]