Add ConfigurableSwitchComputer
This commit is contained in:
parent
83c3b8b982
commit
4001db1ede
|
@ -132,6 +132,83 @@ class SwitchComputer(nn.Module):
|
|||
self.switch.set_attention_temperature(temp)
|
||||
|
||||
|
||||
class ConfigurableSwitchComputer(nn.Module):
|
||||
def __init__(self, multiplexer_net, transform_block, transform_count, init_temp=20,
|
||||
enable_negative_transforms=False, add_scalable_noise_to_transforms=False):
|
||||
super(ConfigurableSwitchComputer, self).__init__()
|
||||
self.enable_negative_transforms = enable_negative_transforms
|
||||
|
||||
tc = transform_count
|
||||
if self.enable_negative_transforms:
|
||||
tc = transform_count * 2
|
||||
self.multiplexer = multiplexer_net(tc)
|
||||
|
||||
self.transforms = nn.ModuleList([transform_block() for _ in range(transform_count)])
|
||||
self.add_noise = add_scalable_noise_to_transforms
|
||||
|
||||
# And the switch itself, including learned scalars
|
||||
self.switch = BareConvSwitch(initial_temperature=init_temp)
|
||||
self.scale = nn.Parameter(torch.ones(1))
|
||||
self.bias = nn.Parameter(torch.zeros(1))
|
||||
|
||||
def forward(self, x, output_attention_weights=False):
|
||||
if self.add_noise:
|
||||
rand_feature = torch.randn_like(x)
|
||||
xformed = [t.forward(x, rand_feature) for t in self.transforms]
|
||||
else:
|
||||
xformed = [t.forward(x) for t in self.transforms]
|
||||
if self.enable_negative_transforms:
|
||||
xformed.extend([-t for t in xformed])
|
||||
|
||||
m = self.multiplexer(x)
|
||||
# Interpolate the multiplexer across the entire shape of the image.
|
||||
m = F.interpolate(m, size=x.shape[2:], mode='nearest')
|
||||
|
||||
outputs, attention = self.switch(xformed, m, True)
|
||||
outputs = outputs * self.scale + self.bias
|
||||
if output_attention_weights:
|
||||
return outputs, attention
|
||||
else:
|
||||
return outputs
|
||||
|
||||
def set_temperature(self, temp):
|
||||
self.switch.set_attention_temperature(temp)
|
||||
|
||||
|
||||
class ResidualBasisMultiplexerBase(nn.Module):
|
||||
def __init__(self, input_channels, base_filters, growth, reductions, processing_depth):
|
||||
super(ResidualBasisMultiplexerBase, self).__init__()
|
||||
self.filter_conv = ConvBnLelu(input_channels, base_filters)
|
||||
self.reduction_blocks = nn.Sequential(OrderedDict([('block%i:' % (i,), HalvingProcessingBlock(base_filters * 2 ** i)) for i in range(reductions)]))
|
||||
reduction_filters = base_filters * 2 ** reductions
|
||||
self.processing_blocks, self.output_filter_count = create_sequential_growing_processing_block(reduction_filters, growth, processing_depth)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.filter_conv(x)
|
||||
x = self.reduction_blocks(x)
|
||||
x = self.processing_blocks(x)
|
||||
return x
|
||||
|
||||
|
||||
class ResidualBasisMultiplexerLeaf(nn.Module):
|
||||
def __init__(self, base, filters, multiplexer_channels, use_bn=False):
|
||||
super(ResidualBasisMultiplexerLeaf, self).__init__()
|
||||
assert(filters > multiplexer_channels)
|
||||
gap = filters - multiplexer_channels
|
||||
assert(gap % 4 == 0)
|
||||
self.base = base
|
||||
self.cbl1 = ConvBnLelu(filters, filters - (gap // 4), bn=use_bn)
|
||||
self.cbl2 = ConvBnLelu(filters - (gap // 4), filters - (gap // 2), bn=use_bn)
|
||||
self.cbl3 = ConvBnLelu(filters - (gap // 2), multiplexer_channels)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.base(x)
|
||||
x = self.cbl1(x)
|
||||
x = self.cbl2(x)
|
||||
x = self.cbl3(x)
|
||||
return x
|
||||
|
||||
|
||||
class ConfigurableSwitchedResidualGenerator(nn.Module):
|
||||
def __init__(self, switch_filters, switch_growths, switch_reductions, switch_processing_layers, trans_counts, trans_kernel_sizes,
|
||||
trans_layers, trans_filters_mid, initial_temp=20, final_temperature_step=50000, heightened_temp_min=1,
|
||||
|
@ -196,3 +273,71 @@ class ConfigurableSwitchedResidualGenerator(nn.Module):
|
|||
val["switch_%i_specificity" % (i,)] = means[i]
|
||||
val["switch_%i_histogram" % (i,)] = hists[i]
|
||||
return val
|
||||
|
||||
|
||||
class ConfigurableSwitchedResidualGenerator2(nn.Module):
|
||||
def __init__(self, switch_filters, switch_growths, switch_reductions, switch_processing_layers, trans_counts, trans_kernel_sizes,
|
||||
trans_layers, trans_filters_mid, initial_temp=20, final_temperature_step=50000, heightened_temp_min=1,
|
||||
heightened_final_step=50000, upsample_factor=1, enable_negative_transforms=False,
|
||||
add_scalable_noise_to_transforms=False):
|
||||
super(ConfigurableSwitchedResidualGenerator2, self).__init__()
|
||||
switches = []
|
||||
multiplexer_base = ResidualBasisMultiplexerBase(3, switch_filters[0], switch_growths[0], switch_reductions[0], switch_processing_layers[0])
|
||||
for trans_count, kernel, layers, mid_filters in zip(trans_counts, trans_kernel_sizes, trans_layers, trans_filters_mid):
|
||||
leaf_fn = functools.partial(ResidualBasisMultiplexerLeaf, multiplexer_base, multiplexer_base.output_filter_count)
|
||||
switches.append(ConfigurableSwitchComputer(leaf_fn, functools.partial(ResidualBranch, 3, mid_filters, 3, kernel_size=kernel, depth=layers), trans_count, initial_temp, enable_negative_transforms=enable_negative_transforms, add_scalable_noise_to_transforms=add_scalable_noise_to_transforms))
|
||||
initialize_weights(switches, 1)
|
||||
# Initialize the transforms with a lesser weight, since they are repeatedly added on to the resultant image.
|
||||
initialize_weights([s.transforms for s in switches], .2 / len(switches))
|
||||
self.switches = nn.ModuleList(switches)
|
||||
self.transformation_counts = trans_counts
|
||||
self.init_temperature = initial_temp
|
||||
self.final_temperature_step = final_temperature_step
|
||||
self.heightened_temp_min = heightened_temp_min
|
||||
self.heightened_final_step = heightened_final_step
|
||||
self.attentions = None
|
||||
self.upsample_factor = upsample_factor
|
||||
|
||||
def forward(self, x):
|
||||
# This network is entirely a "repair" network and operates on full-resolution images. Upsample first if that
|
||||
# is called for, then repair.
|
||||
if self.upsample_factor > 1:
|
||||
x = F.interpolate(x, scale_factor=self.upsample_factor, mode="nearest")
|
||||
|
||||
self.attentions = []
|
||||
for i, sw in enumerate(self.switches):
|
||||
sw_out, att = sw.forward(x, True)
|
||||
x = x + sw_out
|
||||
self.attentions.append(att)
|
||||
return x,
|
||||
|
||||
def set_temperature(self, temp):
|
||||
[sw.set_temperature(temp) for sw in self.switches]
|
||||
|
||||
def update_for_step(self, step, experiments_path='.'):
|
||||
if self.attentions:
|
||||
temp = max(1, int(self.init_temperature * (self.final_temperature_step - step) / self.final_temperature_step))
|
||||
if temp == 1 and self.heightened_final_step and self.heightened_final_step != 1:
|
||||
# Once the temperature passes (1) it enters an inverted curve to match the linear curve from above.
|
||||
# without this, the attention specificity "spikes" incredibly fast in the last few iterations.
|
||||
h_steps_total = self.heightened_final_step - self.final_temperature_step
|
||||
h_steps_current = min(step - self.final_temperature_step, h_steps_total)
|
||||
# The "gap" will represent the steps that need to be traveled as a linear function.
|
||||
h_gap = 1 / self.heightened_temp_min
|
||||
temp = h_gap * h_steps_current / h_steps_total
|
||||
# Invert temperature to represent reality on this side of the curve
|
||||
temp = 1 / temp
|
||||
self.set_temperature(temp)
|
||||
if step % 50 == 0:
|
||||
[save_attention_to_image(experiments_path, self.attentions[i], self.transformation_counts[i], step, "a%i" % (i+1,)) for i in range(len(self.switches))]
|
||||
|
||||
def get_debug_values(self, step):
|
||||
temp = self.switches[0].switch.temperature
|
||||
mean_hists = [compute_attention_specificity(att, 2) for att in self.attentions]
|
||||
means = [i[0] for i in mean_hists]
|
||||
hists = [i[1].clone().detach().cpu().flatten() for i in mean_hists]
|
||||
val = {"switch_temperature": temp}
|
||||
for i in range(len(means)):
|
||||
val["switch_%i_specificity" % (i,)] = means[i]
|
||||
val["switch_%i_histogram" % (i,)] = hists[i]
|
||||
return val
|
|
@ -71,6 +71,15 @@ def define_G(opt, net_key='network_G'):
|
|||
initial_temp=opt_net['temperature'], final_temperature_step=opt_net['temperature_final_step'],
|
||||
heightened_temp_min=opt_net['heightened_temp_min'], heightened_final_step=opt_net['heightened_final_step'],
|
||||
upsample_factor=scale, add_scalable_noise_to_transforms=opt_net['add_noise'])
|
||||
elif which_model == "ConfigurableSwitchedResidualGenerator2":
|
||||
netG = SwitchedGen_arch.ConfigurableSwitchedResidualGenerator2(switch_filters=opt_net['switch_filters'], switch_growths=opt_net['switch_growths'],
|
||||
switch_reductions=opt_net['switch_reductions'],
|
||||
switch_processing_layers=opt_net['switch_processing_layers'], trans_counts=opt_net['trans_counts'],
|
||||
trans_kernel_sizes=opt_net['trans_kernel_sizes'], trans_layers=opt_net['trans_layers'],
|
||||
trans_filters_mid=opt_net['trans_filters_mid'],
|
||||
initial_temp=opt_net['temperature'], final_temperature_step=opt_net['temperature_final_step'],
|
||||
heightened_temp_min=opt_net['heightened_temp_min'], heightened_final_step=opt_net['heightened_final_step'],
|
||||
upsample_factor=scale, add_scalable_noise_to_transforms=opt_net['add_noise'])
|
||||
|
||||
# image corruption
|
||||
elif which_model == 'HighToLowResNet':
|
||||
|
|
Loading…
Reference in New Issue
Block a user