Add ConfigurableSwitchComputer

This commit is contained in:
James Betker 2020-06-24 19:49:37 -06:00
parent 83c3b8b982
commit 4001db1ede
2 changed files with 154 additions and 0 deletions

View File

@ -132,6 +132,83 @@ class SwitchComputer(nn.Module):
self.switch.set_attention_temperature(temp)
class ConfigurableSwitchComputer(nn.Module):
def __init__(self, multiplexer_net, transform_block, transform_count, init_temp=20,
enable_negative_transforms=False, add_scalable_noise_to_transforms=False):
super(ConfigurableSwitchComputer, self).__init__()
self.enable_negative_transforms = enable_negative_transforms
tc = transform_count
if self.enable_negative_transforms:
tc = transform_count * 2
self.multiplexer = multiplexer_net(tc)
self.transforms = nn.ModuleList([transform_block() for _ in range(transform_count)])
self.add_noise = add_scalable_noise_to_transforms
# And the switch itself, including learned scalars
self.switch = BareConvSwitch(initial_temperature=init_temp)
self.scale = nn.Parameter(torch.ones(1))
self.bias = nn.Parameter(torch.zeros(1))
def forward(self, x, output_attention_weights=False):
if self.add_noise:
rand_feature = torch.randn_like(x)
xformed = [t.forward(x, rand_feature) for t in self.transforms]
else:
xformed = [t.forward(x) for t in self.transforms]
if self.enable_negative_transforms:
xformed.extend([-t for t in xformed])
m = self.multiplexer(x)
# Interpolate the multiplexer across the entire shape of the image.
m = F.interpolate(m, size=x.shape[2:], mode='nearest')
outputs, attention = self.switch(xformed, m, True)
outputs = outputs * self.scale + self.bias
if output_attention_weights:
return outputs, attention
else:
return outputs
def set_temperature(self, temp):
self.switch.set_attention_temperature(temp)
class ResidualBasisMultiplexerBase(nn.Module):
def __init__(self, input_channels, base_filters, growth, reductions, processing_depth):
super(ResidualBasisMultiplexerBase, self).__init__()
self.filter_conv = ConvBnLelu(input_channels, base_filters)
self.reduction_blocks = nn.Sequential(OrderedDict([('block%i:' % (i,), HalvingProcessingBlock(base_filters * 2 ** i)) for i in range(reductions)]))
reduction_filters = base_filters * 2 ** reductions
self.processing_blocks, self.output_filter_count = create_sequential_growing_processing_block(reduction_filters, growth, processing_depth)
def forward(self, x):
x = self.filter_conv(x)
x = self.reduction_blocks(x)
x = self.processing_blocks(x)
return x
class ResidualBasisMultiplexerLeaf(nn.Module):
def __init__(self, base, filters, multiplexer_channels, use_bn=False):
super(ResidualBasisMultiplexerLeaf, self).__init__()
assert(filters > multiplexer_channels)
gap = filters - multiplexer_channels
assert(gap % 4 == 0)
self.base = base
self.cbl1 = ConvBnLelu(filters, filters - (gap // 4), bn=use_bn)
self.cbl2 = ConvBnLelu(filters - (gap // 4), filters - (gap // 2), bn=use_bn)
self.cbl3 = ConvBnLelu(filters - (gap // 2), multiplexer_channels)
def forward(self, x):
x = self.base(x)
x = self.cbl1(x)
x = self.cbl2(x)
x = self.cbl3(x)
return x
class ConfigurableSwitchedResidualGenerator(nn.Module):
def __init__(self, switch_filters, switch_growths, switch_reductions, switch_processing_layers, trans_counts, trans_kernel_sizes,
trans_layers, trans_filters_mid, initial_temp=20, final_temperature_step=50000, heightened_temp_min=1,
@ -196,3 +273,71 @@ class ConfigurableSwitchedResidualGenerator(nn.Module):
val["switch_%i_specificity" % (i,)] = means[i]
val["switch_%i_histogram" % (i,)] = hists[i]
return val
class ConfigurableSwitchedResidualGenerator2(nn.Module):
def __init__(self, switch_filters, switch_growths, switch_reductions, switch_processing_layers, trans_counts, trans_kernel_sizes,
trans_layers, trans_filters_mid, initial_temp=20, final_temperature_step=50000, heightened_temp_min=1,
heightened_final_step=50000, upsample_factor=1, enable_negative_transforms=False,
add_scalable_noise_to_transforms=False):
super(ConfigurableSwitchedResidualGenerator2, self).__init__()
switches = []
multiplexer_base = ResidualBasisMultiplexerBase(3, switch_filters[0], switch_growths[0], switch_reductions[0], switch_processing_layers[0])
for trans_count, kernel, layers, mid_filters in zip(trans_counts, trans_kernel_sizes, trans_layers, trans_filters_mid):
leaf_fn = functools.partial(ResidualBasisMultiplexerLeaf, multiplexer_base, multiplexer_base.output_filter_count)
switches.append(ConfigurableSwitchComputer(leaf_fn, functools.partial(ResidualBranch, 3, mid_filters, 3, kernel_size=kernel, depth=layers), trans_count, initial_temp, enable_negative_transforms=enable_negative_transforms, add_scalable_noise_to_transforms=add_scalable_noise_to_transforms))
initialize_weights(switches, 1)
# Initialize the transforms with a lesser weight, since they are repeatedly added on to the resultant image.
initialize_weights([s.transforms for s in switches], .2 / len(switches))
self.switches = nn.ModuleList(switches)
self.transformation_counts = trans_counts
self.init_temperature = initial_temp
self.final_temperature_step = final_temperature_step
self.heightened_temp_min = heightened_temp_min
self.heightened_final_step = heightened_final_step
self.attentions = None
self.upsample_factor = upsample_factor
def forward(self, x):
# This network is entirely a "repair" network and operates on full-resolution images. Upsample first if that
# is called for, then repair.
if self.upsample_factor > 1:
x = F.interpolate(x, scale_factor=self.upsample_factor, mode="nearest")
self.attentions = []
for i, sw in enumerate(self.switches):
sw_out, att = sw.forward(x, True)
x = x + sw_out
self.attentions.append(att)
return x,
def set_temperature(self, temp):
[sw.set_temperature(temp) for sw in self.switches]
def update_for_step(self, step, experiments_path='.'):
if self.attentions:
temp = max(1, int(self.init_temperature * (self.final_temperature_step - step) / self.final_temperature_step))
if temp == 1 and self.heightened_final_step and self.heightened_final_step != 1:
# Once the temperature passes (1) it enters an inverted curve to match the linear curve from above.
# without this, the attention specificity "spikes" incredibly fast in the last few iterations.
h_steps_total = self.heightened_final_step - self.final_temperature_step
h_steps_current = min(step - self.final_temperature_step, h_steps_total)
# The "gap" will represent the steps that need to be traveled as a linear function.
h_gap = 1 / self.heightened_temp_min
temp = h_gap * h_steps_current / h_steps_total
# Invert temperature to represent reality on this side of the curve
temp = 1 / temp
self.set_temperature(temp)
if step % 50 == 0:
[save_attention_to_image(experiments_path, self.attentions[i], self.transformation_counts[i], step, "a%i" % (i+1,)) for i in range(len(self.switches))]
def get_debug_values(self, step):
temp = self.switches[0].switch.temperature
mean_hists = [compute_attention_specificity(att, 2) for att in self.attentions]
means = [i[0] for i in mean_hists]
hists = [i[1].clone().detach().cpu().flatten() for i in mean_hists]
val = {"switch_temperature": temp}
for i in range(len(means)):
val["switch_%i_specificity" % (i,)] = means[i]
val["switch_%i_histogram" % (i,)] = hists[i]
return val

View File

@ -71,6 +71,15 @@ def define_G(opt, net_key='network_G'):
initial_temp=opt_net['temperature'], final_temperature_step=opt_net['temperature_final_step'],
heightened_temp_min=opt_net['heightened_temp_min'], heightened_final_step=opt_net['heightened_final_step'],
upsample_factor=scale, add_scalable_noise_to_transforms=opt_net['add_noise'])
elif which_model == "ConfigurableSwitchedResidualGenerator2":
netG = SwitchedGen_arch.ConfigurableSwitchedResidualGenerator2(switch_filters=opt_net['switch_filters'], switch_growths=opt_net['switch_growths'],
switch_reductions=opt_net['switch_reductions'],
switch_processing_layers=opt_net['switch_processing_layers'], trans_counts=opt_net['trans_counts'],
trans_kernel_sizes=opt_net['trans_kernel_sizes'], trans_layers=opt_net['trans_layers'],
trans_filters_mid=opt_net['trans_filters_mid'],
initial_temp=opt_net['temperature'], final_temperature_step=opt_net['temperature_final_step'],
heightened_temp_min=opt_net['heightened_temp_min'], heightened_final_step=opt_net['heightened_final_step'],
upsample_factor=scale, add_scalable_noise_to_transforms=opt_net['add_noise'])
# image corruption
elif which_model == 'HighToLowResNet':